
  
 

THE UNNOTICED REGIONAL ONTOLOGY OF MECHANISMS 
Ingvar Johansson 

 
(Pre-print version of a paper published in Axiomathes VIII, pp. 411-428, 1997.) 

 
The first main thesis of this paper is that we can intuit (in the German sense of 
"anschauen") a kinematics of mechanisms in the same way as we can intuit some 
truths in Euclidean geometry. There is a philosophically almost wholly neglected area 
in which intuition is possible, actual, and a source of a kind of knowledge which is 
important both in science and technology. This area makes up a regional ontology (in 
Husserl's sense1) which contains truths about figures-through-time, truths which have 
the same epistemological status as the truths of the original Euclidean geometry; 
whatever that status may be. (I do myself regard geometrical truths as Husserlian 
eidetic laws or laws of essences, and therefore as non-conceptual a priori truths, but 
the views I put forward in this paper do not rely on such views about synthetic a 
priori truths.) 
   The second main thesis is that, even if my remarks about a possible mechanism 
geometry should be wrong, there is nonetheless a surprising lack of studies of 
mechanism concepts and of mechanism thinking. 
 
1. Contiguity geometry 
 
Analytical geometry revolutionised geometry. The introduction of co-ordinates to 
define positions in space, and the possibility thereby created, to describe geometrical 
figures by means of algebraic equations, turned out to be the foundation of a 
magnificent development of geometry. However, this arithmeticization and 
algebraicization must not hide the important fact that geometry was a mathematical 
science long before Descartes invented analytical geometry. Even though large parts 
of modern geometrical knowledge are possible only within this kind of geometry, it 
should not be forgotten that some parts were created independently of analytical 
geometry. Independently of numbers we can intuit what falls under the concepts of 
point, line, straight line, surface, plane surface, angle, boundary, figure, circle, parallell 
lines, and some others; and we can intuit axioms like the one that things which 
spatially coincide with one another are equal to one another (= Euclid's fourth 
axiom2). 
   Also, I want the reader to keep in mind the fact that a lot of geometrical truths were 
discovered before Euclid distinguished between (in modern terms) axioms and 
theorems and managed to turn geometry into a deductive system. The following three 
steps in the development of geometry should be kept distinct:  
 

(1) the discovery of pure geometrical truths  
(2) the discovery of axiomatic geometry  
(3) the discovery of analytical geometry. 

    
   For the purposes of this paper, I do not find it necessary to discuss the 
epistemological consequences of the discovery of the non-Euclidean geometries. In 

                                                   
1 [Husserl 1982], §9. 
2 [Euclid 1956], 155. 



2 
 

some sense we can, even today, say that pure geometry, Euclidean as well as 
non-Euclidean, affords us some kind of non-empirical knowledge. Whether or not 
physical space-time is Euclidean is of course another matter, and a question which can 
only be settled empirically. In what follows, non-Euclidean geometrical thinking is 
wholly left out of account. 
   Today, geometry also includes areas like projective geometry and topology. But, I 
claim, there are even more kinds of geometrical truths. I shall sketch something which 
I would like to call contiguity geometry. Some examples will make the basic point 
clear. If two equally large half circle formed figures are put together, in the same 
plane, in such a way that their straight lines meet one another, then we get a figure 
whose non-common boundary shape is a circle. Leaving some assumptions tacit, we 
can write: 'half circle + half circle = circle'. 
   The last statement is a non-empirical truth about geometrical shapes. It says what is 
the case when two equally large half circles are contiguous in space in a certain way. 
Similarly, it is non-empirically true that when two equally large squares are 
contiguous in such a way that they share one side, then their non-common boundary 
shape is a rectangle. We get: 'square + square = rectangle'. When two right-angled 
triangles are contiguous with their hypotenuses in common, their non-common 
boundary shape is also a rectangle. We can symbolize it: 'right-angled triangle + 
right-angled triangle = rectangle'. However, since our language is very meager with 
respect to concepts which describe geometrical shapes, it is hard to find many truths 
of this kind which can be propositionally represented. But if pictorial representation 
is allowed, then examples can be multiplied indefinitely. All one has to do is to make 
two shapes contiguous and focus attention on their non-common boundary shape. 
Two geometrical shapes conjoined and contiguous to each other give rise to a third 
geometrical shape. And what this third shape looks like can be discovered by means 
of intuition ("Anschaung").  
   The relationship which exists between the shapes of the two contiguous figures and 
their common shape is, I think, discovered by the same kind of intuition which led to 
the first discoveries of pure geometrical truths. Thus, truths like 'right-angled triangle 
+ right-angled triangle = rectangle' are propositionally represented truths within 
contiguity geometry, but most such truths can (at least today) only be pictorially 
represented. Whether or not they can be systematised into some kind of theory is a 
question whose answer is far beyond the aim of this paper. I am not trying to become 
a Euclid of contiguity geometry. 
   I have so far only talked about two contiguous figures, but of course one may also 
investigate the non-common boundary shape of three or more figures. I would like to 
define contiguity geometry as the study of properties and relations which accrue to 
two (or more) contiguous geometrical figures.3 Common shape is not the only 
property which can be studied. There is another contiguity-geometrical property 
which may be called  unbroken attachment; its opposite may be called broken 
attachment. Two two-dimensional contiguous figures may either have only one line in 
common, in which case they have an unbroken attachment; or they may have more 
than one line in common, in which case they have a broken attachment. Two figures 
which have a broken attachment must, somewhere, have an empty space enclosed 
between them. 

                                                   
3 I take ‘contiguity’ to imply ‘not overlapping’. 
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   The contiguity-geometrical property of unbroken attachment is explored by at least 
one well-known group of people, namely by jig-saw puzzle solvers. Since, at the 
moment one plays with them, the bits of a jig-saw are assumed to be both rigid and 
non-destructible, they instantiate for the puzzle solving mind ideal geometrical figures. 
A necessary condition for two bits to belong together is that they can have an 
unbroken attachment. Another condition, of course, is that contiguous bits have to fit 
into the overall picture of the jig-saw, which means that the bits shall neither 
collectively have any broken attachment. 
   A child trying to build a little house with building bricks, can be said to be 
concerned with all three kind of contiguity-geometrical properties mentioned. Most of 
the bricks must have unbroken attachments in order not to fall, but the bits taken 
collectively should also leave empty spaces for imagined rooms, doors, and windows. 
The house as a whole shall of course have a nice over-all boundary shape. 
   With respect to aggregates of geometrical figures (like the building bricks above), 
one may talk of  possibility truths as well as of impossibility truths. Some boundary 
shapes are possible to create by the given aggregate of geometrical figures and some 
boundary shapes are impossible to create by making the figures contiguous.  
   The figures in my examples above, are meant to be thought of as two-dimensional 
or three-dimensional. In a one-dimensional space, contiguity geometry has no interest 
at all. In such a space there is only two possible shapes, being a point and being a line, 
and only one possible kind of attachment, (end-)point to (end-)point. The more 
dimensions the more shapes become possible, and, consequently, the more complex 
does the corresponding contiguity geometry become. In the next section, time is 
brought in as an additional dimension, whereby contiguity geometry takes on the form 
of kinematical contiguity geometry and of mechanism geometry. 
 
 
2. Mechanism geometry 
 
What can an old-fashioned (i.e. non-topological and Euclidean) geometrical figure do 
in time? Answer: It can either move or be at rest, and if it moves it can have a motion 
which is either translational, rotational, or a combination of translation and rotation. 
Such a figure is, if three-dimensional, an absolutely rigid and massless body. It is 
indestructible, and it can change neither shape nor size, but it can move. When it 
moves a four-dimensional space-time shape is created. We shall not, however, look at 
one single such body, but continue with contiguity geometry; we shall look at two (or 
more) contiguous geometrical figures of which at least one is moving. 
   My first three examples of time-extended contiguity geometry are (i) the axle, (ii) 
the encircled cylinder, and (iii) the nut-and-bolt (see Figure 1).  
 

 
 
Figure 1
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   The one who understands the axle can intuit the outer geometrical figure (two-
dimensionally, a ring) as rotating around the inner figure (two-dimensionally, a circle). 
This intuition is in the pictorial representation represented by the ring and the rod in 
their unbroken attachment plus the arrow. Note that the intuition and the picture are 
not identical. The arrow represents two things simultaneously, both the temporality 
and the direction of the movement of the ring. My claim now is simply that it is a non-
empirical truth that these two geometrical figures (or absolutely rigid and massless 
bodies) can be in complete and unbroken attachment during the whole time period in 
which the outer figure is rotating around the inner figure. In space-time we can 
imagine a corresponding ideal shape, i.e. a shape really extended in time. 
   I am pretty sure that some intuition like the one described was at work when the 
wheel was invented, but I am also sure that this was not the whole of the inventive 
intuition. Of course, the wheel must be intuited also in relation to a third figure, the 
ground, but that is not what I am thinking of primarily. In order for something to be a 
wheel, there has to be some kind of force or cause which can make the thing with the 
wheel move. But in the kind of intuition that I am trying to describe in this paper, all 
causes have been abstracted away. Physicists have since long made a distinction 
between kinematics and kinetics in the study om motion. Kinematics is the study of 
motion without references to masses or forces, whereas in the kinetics (or dynamics) 
of movement the causes of movements are studied. Analogously, what I am 
concerned with can be called kinematical contiguity geometry; another possible label 
is mechanism geometry. I am concerned with mechanisms, but mechanisms regarded 
wholly apart from operating forces, friction, and similar things. When forces are taken 
into account, too, we get mechanism kinetics, or mechanisms in the ordinary sense. 
   The intuition of the axle contains a non-empirical possibility truth of mechanism 
geometry. It says that it is possible for the wheel to rotate around the rod at the same 
time as they are in complete and unbroken attachment. 
   In the next example - Figure 1, picture ii - we find another such simple non-
empirical possibility truth. It is possible for the cylinder to move in a vertical 
movement and at the same time be in unbroken attachment with the surrounding 
body. Also, of course, there are non-empirical impossibilities. It is impossible to move 
the cylinder in any other direction than the vertical one. When this intuition is 
combined with thoughts of forces, we get a mechanism which is part of several 
inventions, e.g. the water pump and the cylinder of the internal-combustion engine. If 
the cylinder is exchanged for different kinds of prisms, then a lot of other, but 
structurally similar, intuitions and inventions become possible. 
   In the nut-and-bolt case, picture iii, we find a more complex but structurally similar 
non-empirical truth. The only possible movement for the nut, if we keep the bolt 
non-moving, is the combination of a rotational and a translational movement which is 
typical for screws. Today, it is a very well-known kind of movement, but once upon a 
time it was a peculiar invention. As an invention it includes thoughts of forces, but 
also a kinematic intuition to the effect that two contiguous figures, which have such 
shapes, can be in unbroken attachment while having the screw movement. 
   Intuitions of the kind described can equally easily be found in relation to contiguous 
bodies which are completely external to each other in space. Think of cog-wheels. In 
Figure 2, picture iv, there is a representation of the ordinary circular cog-wheel, which 
is an essential part in an enormous lot of different kinds of mechanisms and machines. 
When all forces are abstracted away, we can intuit the pure space-time shape which is 
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created by the two moving geometrical shapes. This intuition does not say that one of 
the wheels is pushing the other. It merely says that they can move continuously while 
being in unbroken attachment to each other by some cog. There is, by the way, also 
an impossibility truth connected with the cog-wheel. The wheels cannot possibly 
move in the same direction if the wheels shall stay contiguous and the cogs never be 
spatially coinciding. The conjunction of these two truths may very well be called the 
cog wheel axiom. 
 

 
Figure 2 
 
   The pictures v and vi are inserted only as intuition exercises for the reader. Can 
these wheels rotate while being unbrokenly contiguous? In the next pictures (Figure 3, 
vii and viii) we find the right angled bevel gear and the worm gear, respectively. They 
are just as non-empirically possible as the ordinary cog wheel is, but to see this 
possibility seems to require a lot more from our ability to intuit space-time shapes 
than the ordinary cog wheel does. 
 
 

 
Figure 3 
 
   I have defined contiguity geometry as the study of properties and relations which 
accrue to two (or more) contiguous geometrical figures. Mechanism geometry, I 
would like to define as the study of properties and relations which accrue to two (or 
more) contiguous geometrical figures during a time period. All geometrical bodies 
are indestructible, colourless, and massless; and they cannot be subject to any forces. 
When they are regarded apart from time, as in ordinary geometry, they are of course 
non-changeable or rigid. Their shape cannot possibly change. However, when time is 
brought in, as in mechanism geometry, then changes of shape of the geometrical 
bodies become possible. The geometrical figures which are to be investigated need 
then not necessarily be treated as rigid (as in the examples in pictures i to viii). They 
can equally well be treated as malleable. A malleable geometrical body is a figure 
which is massless and indestructible but which can change shape while retaining both 
its identity and its size or volume. Shape changes can be investigated in mechanism 
geometry, just like movements.  
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   Once again I will pick an example from the history of inventions; an example which 
will make it obvious in what way mechanism geometry differs from topology. Let us 
take a quick look at Archimedes’ famous water screw (see Figure 4, picture ix).  
 

 
Figure 4 
 
   Usually, when we look at it, we think of water which is lifted by the force of the 
screw's movement. But in order for us to step into mechanism geometry, this force 
has to be abstracted away. The water should be thought of as a completely malleable 
geometrical body and the screw should be regarded as an absolutely rigid body. We 
then have a malleable geometrical shape which is contiguous to a rigid geometrical 
shape. Wholly without any empirical investigations, we can now see that it is possible 
for the malleable figure to move and to change shape in such a way that it can follow 
the movement of the screw at the same time as it moves from the lower basin to the 
upper one. This truth tells us as much or as little about the real world as the truths of 
ordinary geometry do. It is a truth about ideal entities, but it is still a truth. 
   There are mechanism-geometrical truths both about rigid figures (i.e. figures which 
can change neither shape nor size) and about malleable figures (i.e. figures which can 
change shape but not size). However, there are also mechanism-geometrical truths 
about figures which can change both shape and size. Let me call such figures gaseous. 
Ordinarily, we think of gases both as malleable and as expandable and contractible 
without losing their identity. Of course, there is a link between the ideal concept of a 
rigid geometrical body and the ordinary concept of solid, and between the ideal 
concept of malleable geometrical body and the ordinary concept of liquid, just as there 
is this link between the ideal concept of gaseous geometrical body and the ordinary 
concept of gas. 
   Earlier, when I laid bare the mechanism geometry of the encircled cylinder, I 
mentioned in passing the cylinder of the internal-combustion engine. Now, I can 
expand this example a little. Normally, we think of such a cylinder as consisting of a 
gas which (when being ignited) explodes and, thereby, forces the cylinder shaped 
piston to move downwards, and, in turn, by another mechanism, move a rod. Once 
again: In order to step into mechanism geometry, we have to think all forces away. 
What is left when this act of abstraction has been performed, is the non-empirical 
possibility truth that a gaseous geometrical body can change shape and size in such a 
way that it, during every moment in the time period in question, fills all the space 
there is between the moving rigid geometrical body and the non-moving surrounding 
rigid geometrical body. 
   Obviously, there are an infinite number of possible combinations of rigid, malleable, 
and gaseous figures in a mechanism geometry, but I shall not delve into any more 
examples. My aim in this paper is not to do mechanism geometry, but to show that 
there exists a regional ontology which deserves such a name since it contains non-
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empirical truths of its own.4 At the beginning of this section, I talked as if the 
concepts of kinematic contiguity geometry and mechanism geometry might be 
synonymous, but they are not. The study of ideal malleable and gaseous bodies cannot 
be restricted to their kinematics. Kinematical contiguity geometry is merely one part 
of mechanism geometry. 
 
 
3. Mechanisms in science 
 
All my examples of mechanisms so far have been examples of artificial mechanisms, 
i.e. mechanisms invented by man. But nature contains in itself a myriad of different 
mechanisms; some of them may be called nature's evolutionary inventions. 
Mechanisms are mechanisms independently of origin. This being so, I want to make 
some remarks on the existence of mechanisms in natural scientific theorizing. In these 
remarks, though, my distinction between the kinematics and the kinetics of 
mechanisms is of no relevance, except when explicitly mentioned. 
   In the medical sciences mechanisms abound all the way from the macro level to the 
micro level of molecular biology. The mechanisms which even we laymen talk about 
(the blood circulation system, the attached lymph system, the central and the 
peripheral nervous system, the digestive and secretion systems and the immune 
system) have been analyzed into more detailed physiological mechanisms, and these, 
in turn, the molecular biologists try to analyse into molecular mechanisms. 
   Likewise, mechanisms abound in the whole of ecology, biology, and zoology; and 
the same goes for the earth sciences and disciplines like meteorology. All of them 
make heavy use of mechanisms both in explanations and predictions. But, and this is a 
noteworthy fact, the same cannot be said of modern physics. In particular, it happens 
to be the case that none of the three most prominent physical theory constructions of 
this century (the theory of special relativity,5 the theory of general relativity, and the 
quantum mechanical theories) contain descriptions of mechanisms. The theory of 
special relativity consists only of equations by means of which it is possible to 
transform length values and mass values from one inertial frame into another such 
frame, and these transformations are not associated with any mechanisms at all. In 
general relativity theory, each solution to the general equation gives a holistic 
description of space-time and its mass-energy distribution; the theory depicts no 
mechanism whereby a certain space-time structure becomes connected with a certain 
mass-energy distribution, or vice versa. Quantum mechanics is, by many 
non-positivists and realists, regarded as a theory which cries for a mechanism which 
makes it really understandable. As is well known, however, no such good mechanism 
has yet been discovered or invented. The most important parts of twentieth century 
physics have, no doubt, developed without making use of mechanism explanations. 
   In fact, mechanisms were conspicuously absent even from the theories which 
constitute the birth of classical physics. Galilei's law for freely falling bodies, Newton's 
laws of motion, and his gravitational law, were all phenomenological laws. They relate 
                                                   
4 This paper is a development of thoughts first put forward in [Johansson 1989], chapter 14; in the 
book there is no real concept of mechanism geometry, although the founding idea is there. 
5 In special relativity, geometrical shape is not a frame-invariant property. Nonetheless, however, 
this theory does not affect my thoughts about a mechanism geometry any more than the non-
Euclidean geometries do. Much can be said here, but for the moment I have to rest content with 
stating my view. 
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different magnitudes to each other but describe no mechanisms. Newton's 
gravitational law momentarily relates masses which can be at any distance from each 
other in space; whereby philosophy got the problem of action at a distance. Action at 
a distance, of course, necessarily excludes every kind of contiguity geometry and 
ordinary mechanisms. There are, though, two famous classical theories which contain 
talk of mechanisms: the statistical interpretation of thermodynamics (whereby 
temperature is regarded as an effect of the kinetic energy of molecules) and Faraday’s 
formulations of the electromagnetic field theory (in which there are real fields with 
different patterns of field strengths). Sometimes, also physics has developed by 
making use of mechanism explanations. 
   The conclusion which follows from my brief remarks is simple: Sometimes a natural 
science can make progress without mechanism intuiting, but sometimes such intuiting 
is needed. 
 
 
4. Mechanisms in the philosophy of science 
 
For positivists who claim that science should only look for correlations among 
observables, mechanism thinking can only be an intermediary heuristic device in the 
hunt for fundamental correlations. For reductionists, who think that in the end all the 
sciences will be reducible to physics, mechanism intuiting is important only if it is 
important in physics. But since modern physics seems to do well without hypotheses 
about mechanisms, philosophers of science need not waste time on trying to analyse 
what mechanism intuiting really is about. Within philosophy of science, both 
positivists and reductionists will be interested mainly in the formal-logical structure of 
science. That is part and parcel of their positions. 
   Since positivists and reductionists for a long time dominated the philosophy of 
science in this century, it is not surprising that the concept of mechanism has no 
central place in the philosophy of science. Somewhat surprisingly, though, I find the 
fact that non-positivist and non-reductionist philosophers of science, who even owe 
some of their reputation to their stress on the concept of mechanism, have nonetheless 
made no real attempt to get a really clear idea of what can constitute a mechanism. 
Therefore, I shall make some brief comments in relation to three such philosophers of 
science: Mario Bunge, Rom Harré, and Roy Bhaskar.  
   In 1964 Bunge published his paper Phenomenological Theories,6 in which he 
attacked what he called 'black boxism'. A black box theory (or phenomenological 
theory), is a theory in which there is no talk of mechanisms which connect input 
variables to output variables. In a translucid box theory (or representational theory) 
there is some kind of representation of such a mechanism. 'Black boxism' is the view 
that science should only be concerned with black box theories. According to Bunge, 
both phenomenological and representational theories are important in science, but the 
representational ones give deeper explanations; black box theories are important now 
and then, but black boxism is devastating for science. 
   The same stress on mechanisms reappears on several occasions in Bunge's two 
volume treatise, Scientific Research.7 Never, however, does Bunge try to tell the 
reader what a mechanism is. In passing, he distinguishes between mechanical and 

                                                   
6 [Bunge 1964], 234-254. 
7 [Bunge 1967], see in particular vol. I, chapters 5.4 and 8.5. 
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non-mechanical mechanisms and between visualizable and non-visualizable 
mechanisms, but all the time he takes it for granted that everyone knows what a 
mechanism is. There is not even a hint at the existence of something like a mechanism 
geometry. 
   A few years later than Bunge, Rom Harré mounted his attack on positivist and 
conventionalist philosophy of science in his book The Principles of Scientific 
Thinking (1970). Harré talks about three great myths in the philosophy of science, the 
myth that events are the prime objects of knowledge, the myth that only sentences can 
be vehicles of rational thought, and the myth of deductivism that logical order 
matches natural order and that mathematics is an ideal of knowledge. Instead, he 
proposes  some "counter principles" which he thinks ought to replace the myths. 
These principles are implicitly about mechanisms: 
 
(a) The world is a collection of semi-permanent structures, and there is knowledge both of how these 
structures behave (conditional law statements), and of what they are (categorical descriptions of 
structure, etc.). These two fields of knowledge are linked together by the idea of powers, i.e. 
behaviour is seen as the exercise of capacities things have in virtue of their natures. 
(b) The vehicles for thought are not wholly propositional but 'pictorial' as well, so that considerations 
affecting the judgement of likeness and unlikeness become important as principles of rationality. 
(c) A Theory is a complex of 
 (i) a representation or description of a permanent structure which is responsible for the  
     phenomena explained by the theory; 
 (ii) a set of conditional statements describing how that structure reacts, in particular 
      circumstances. 
 (iii) if the structure responsible for the pattern of phenomena is unknown then an 
       iconic model of it must be constructed.8 
 
   When Harré explicitly speaks of mechanisms, he refers to ordinary examples like the 
clockwork, bouncing molecules, viruses which cause diseases, other physiological 
mechanisms, the mechanism of natural selection, and so on. Often, however, he adds 
an adjective and talks of 'causal mechanisms' or 'generative mechanisms'. In section 2 
above, I distinguished between mechanism kinematics and mechanism dynamics (or 
kinetics) and tried to analyse the former one. Harré does not notice the possibility of 
such a distinction, but, in fact, he is only interested in the dynamics of mechanisms, 
i.e. of powers and causal laws. Here is another quotation. 
 
Causal laws are saying ultimately how a cause generates its effect. To establish this element in causal 
law the proponent of the law can be called upon to describe the manner and mechanism of the 
generation of the effect by the cause. To do this he must advert to the inner constitutions, structures, 
powers, encompassing systems, and so on, of which natural generative mechanisms are constituted, 
and of which the connection between cause and effect usually consists.9 
 
   It then turns out to be the case that Harré has very specific views about what the 
ultimate constituents of causal relations can be like. He argues for the view that "The 
ultimate entities are point sources of mutual influence".10 According to Harré, all 
generative mechanisms in nature must be grounded in powers which reside in 
mathematical points in space. In a mathematical point there can be no contiguity 
geometry, and, really, Harré reduces mechanisms to point powers. 

                                                   
8 [Harré 1970], 1-2. 
9 [Harré 1970], 104. 
10 [Harré 1970], 296. 
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    'Natural science is a fact, but how is it possible?', Roy Bhaskar asks in his A Realist 
Theory of Science.11 It is possible, he says, because experiments are possible, and 
experiments are possible because reality is stratified into experiences, events, and 
mechanisms; all equally real.  Mechanisms generate events, and some events can be 
experienced. Usually, in nature many mechanisms cooperate and/or counteract in the 
production of events. In experiments, mechanisms are isolated. Despite the important 
role the concept of mechanism plays in Bhaskar's philosophy of science, he never 
analyses it. He simply relies on Harré's concepts of powers and generative 
mechanisms. 
   Conclusion: Neither Bunge nor Harré nor Bhaskar, do realise the important part 
played by four-dimensional shapes in ordinary mechanism intuiting. 
 
 
5. Mechanisms in technology 
 
I started with technological examples, and, now, after our detour into science and the 
philosophy of science, we shall return to technology. In a science like physics, one 
often distinguishes between theoretical physics and experimental physics, but no 
similar distinction seems to exist within technology. However, there have been some 
attempts to create what I would like to term theoretical technology. Now, if 
somewhere in technology there is something like a mechanism geometry with non-
empirical truths, it surely should be found among these attempts at technological 
theory foundation. If I may trust a very superficial glance at the history of technology, 
there is only one man whose thoughts I have to present a little, Franz Reuleaux. 
   In 1875 Reuleaux published a book he called Lehrbuch der Kinematik: 
Theoretische Kinematik. Grundzüge einer Theorie des Maschinenwesens, and in 
1900 there followed a second volume called Lehrbuch der Kinematik: Die 
praktischen Beziehungen der Kinematik zu Geometrie und Mechanik; in 1963 there 
appeared an English translation called The Kinematics of Machinery: Outline of a 
Theory of Machines (which I have not read; the translations below are my own). 
Long before Reuleaux there had been attempts at classifications of different machines 
and different kinds of machine elements. A Swedish inventor living around the turn of 
the seventeenth century, Christoffer Polhem, had even tried to create a mechanical 
alphabet. But no one had set himself the task which Reuleaux makes his own, namely 
to outline "a truly deductive treatment of machines".12  
   To start with, Reuleaux treats the bodies as absolutely rigid ("vollkommen 
widerstandsfähig") and he takes no account of their masses; he is only interested in 
their geometrical properties.13 Later, he came to speak of a theorem of sufficient 
rigidity ("Satz von der ausreichenden Widerstandsfähigkeit").14 In one sense he 
disregards what I have called mechanism kinetics, but in another not. He is often 
interested in what ways mechanisms can transmit forces, but he is never interested in 
what way forces do arise. Sometimes he talks about his treatise as "Zwanglauflehre", 
but he says that the best word for it is phoronomy, i.e. geometry of motion.15 
(According to Reuleaux, it was Kant who first proposed a separation between 
                                                   
11 [Bhaskar 1975]. 
12 [Reuleaux 1875], viii. 
13 [Reuleaux 1875], 44-45. 
14 [Reuleaux 1900], 151. 
15 [Reuleaux 1875], 59. 
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phoronomy and the old geometry for figures at rest.16 I can add that Husserl mentions 
phoronomy in Ideen.17) 
   The kind of geometry of motion which Reuleaux wants to study is a special kind of 
movement. He is not primarily concerned with the movement of one single body as in 
the cycloid movement, which was studied in phoronomy. The basic kinematical units 
of machines are, he says, pairs of elements ("Elementenpaaren").18 A machine can be 
analysed into one or several mechanisms, and these, in turn, can be analysed into pairs 
of elements. But then the machine analysis ends. Similarly, the kind of study which I 
have called contiguity geometry cannot be done with only one shape; two shapes are 
needed in order for questions of over-all shape and unbroken attachment to arise. 
   With regard to rigid bodies, there are according to Reuleaux three kinds of 
encompassing pairs ("Umschlusspaare"), i.e. pairs of elements where one element 
encompasses the other. I can now say that my first three examples of mechanism 
geometry are almost identical with Reuleaux's three basic "Umschlusspaare".19 As 
Reuleaux notes, if one varies the screw angle of the nut and bolt, one may regard such 
a variation as having its extremes in the axle (where there is only a rotational 
movement) and the prism or cylinder (where there is only a translational movement). 
When he has treated the rigid bodies, he does not introduce any concepts which 
correspond to those that I called malleable and gaseous bodies, respectively. But he 
makes an augmentation and introduces the flexible mechanical elements ("die 
bildsamen kinematischen Elemente"), i.e., elements which can transmit forces in only 
one direction like bands of leather, of metal, and of other stuffs.20 However, I shall 
stop my presentation here and present the two conclusions I have drawn. 
   (1) Reuleaux's work has the flaw that he never explicitly abstracts all causality away 
and isolates mechanism geometrical truths. But he came close to doing it. 
   (2) In the second volume of his great treatise, Reuleaux says that he has "strictly a 
priori deduced" the three "Umschlusspaare" spoken of.21 Be that as it may, Reuleaux 
did not succeed in becoming the Euclid of machine theory. But perhaps this is 
objectively impossible. Perhaps, contiguity geometry and mechanism geometry do not 
lend themselves to a systematisation in which a lot of geometrical truths become 
derivable as theorems from a set of fundamental axioms.  
 
 
6. Mechanisms in Ontology 
 
In a very recent paper, "Aspects of the Mereology of Artifacts",22 P.M. Simons and 
C.W. Dement writes the following: 
 

                                                   
16 [Reuleaux 1900], vi.  
17 Husserl writes: "It is well known that the basic means of natural scientific theorizing are the 
purely mathematical disciplines such as the material disciplines of geometry or phoronomy, the 
formal (purely logical) disciplines such as arithmetic, analysis, etc. It is manifestly clear that these 
disciplines do not proceed empirically, that they are not grounded by observation and experiments on 
experienced figures, movements, and so forth." [Husserl 1982], 45. 
18 [Reuleaux 1875], 46. 
19 [Reuleaux 1875], 94 and [Reuleaux 1900], 155-56. 
20 [Reuleaux 1875], 165. 
21 [Reuleaux 1900], 729. 
22 [Poli & Simons], 255- 276. 
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The level of civilisation is literally measured by the kind of artifacts of which a culture is capable, 
from the first palæolithic hand axe to the space shuttle and the supercomputer. It is all the more 
surprising then that there has been little interest in the general ontological status of artifacts. Perhaps 
it is assumed that there is little to say beyond the bare dictionary definition, or perhaps that the very 
variety and heterogeneity of artifacts inhibits such a general study. They lack as a class that 
simplicity and amenity to formal treatment that attracts the formally inclined, and largely fail to give 
rise to the kinds of tingling intellectual puzzles that customarily attract philosophers. 
   Nevertheless, so important a class of entities should not remain outside the general ontological 
purview.23 
 
   I sympathize whole-heartedly with what is said in this quotation, and with the 
authors' attempt do ontology in this area. My thoughts about a regional ontology of 
mechanisms ought to be of interest also for that kind of undertaking, but I want to 
make two comments in relation to Simons & Dement's paper. First, they do not write 
about the kind of mechanism intuition that I have tried to highlight. Second, 
mechanism intuition is at work not only in relation to artifacts; it is important in 
relation to nature, too. Reuleaux, by the way, also notes this obvious fact, and he ends 
his technological treatise with a section called "Kinematics in the Animal Kingdom". 
 
 
7. Concluding remarks on the study of mechanism intuiting 
 
Ordinary geometry, as is well established, grew out of practical  earth measurements. 
It took quite a time for the human mind to make (or perhaps: found it worthwhile to 
make) the kind of abstraction which is necessary in order to go from ordinary solid 
things to the non-destructible colourless and massless absolutely rigid bodies of 
geometry. In a lot of ways, however, this kind of thinking in terms of ideal figures has 
proved to be fruitful; both theoretically and practically. The primary aim of the 
sections above was to highlight the fact that it is equally possible, in relation to the 
mechanisms spoken of in technology and the natural sciences, to abstract the 
corresponding mechanism dynamics away and get a mechanism geometry about ideal 
figures moving and/or changing in time. 
   Ordinary geometry has made its way even into intelligence tests. In most tests in 
which a general intelligence is supposed to be measured, some of the problems to be 
solved are in a wide sense geometrical. Psychologists concerned with these kinds of 
tests have since long discussed whether or not the general intelligence should be seen 
as consisting of various factors. One of the pioneers, C. Spearman, distinguished 
between one general factor and some specific superimposing factors. Another one, 
L.L. Thurstone, made by means of statistical factor analysis, a distinction between 
spatial ability, perceptual speed, numerical ability, verbal meaning, memory, verbal 
fluency, and inductive reasoning. In this half of the century, J.P. Guilford has 
proposed a "structure-of-intellect model" where he gets 120 intellectual abilities by 
crossing some more fundamental ones.24 Quite recently, it has been argued in an 
international best-seller, H. Gardner, Frames of Mind -  The Theory of Multiple 
Intelligences,25 that there are seven distinct different intelligences.  
   I am not mentioning intelligence tests in order to step into the discussion of their 
validity and reliability, but in order to make a general point of relevance for the topic 
                                                   
23 [Poli & Simons], 255. 
24 [Guilford 1967]. 
25 [Gardner 1984]. 
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of this paper. As soon as it is assumed that there are different factors in a general 
intelligence, or that there exist different kinds of intelligences, then it becomes 
possible for me to ask where in the intelligence concept at hand the ability to intuit 
mechanisms has been placed. 
    Gardner, in the book mentioned, distinguishes between the following intelligences: 
linguistic, musical, logical-mathematical, spatial, bodily-kinesthetic, intrapersonal, and 
interpersonal. Only two of them are of interest here, the logical-mathematical 
intelligence and the spatial intelligence, and one may note that these intelligences have 
obvious similarities with some of the factors distinguished by his forerunners. These 
distinctions, by the way, conform well with the introductory remark I made about 
analytical geometry in relation to the original Euclidean geometry. In analytical 
geometry, I think, one mostly makes use of the logical-mathematical intelligence, 
whereas in Euclidean geometry some kind of spatial intelligence is also central. A 
typical problem in a test of the spatial intelligence (or ability) is the following. One is 
presented with some pictures of somewhat complicated three-dimensional figures; 
two of these pictures depict an identical body but seen from different perspectives. 
The problem consists in identifying these two pictures.  
   So far so good. Now, if what I have called mechanism intuiting should be part of 
any of the intelligences or intelligence factors mentioned, it ought to be part of the 
spatial one. However, problems concerned with mechanisms are absent in Gardner's 
discussion of the spatial intelligence. And what is true of Gardner's presentation 
seems, according to a quick survey of mine,26 to be true both of most such discussions 
and of intelligence tests. At least they are true of H.J. Eysenck's widely known 
self-assessment books.27 In these books, many of the problems test one's ability to see 
figures in space from different perspectives, but no problem tests one's ability to 
imagine figures moving and/or changing in time. The ability to see mechanisms is not 
tested at all. I am not saying that there must be a spatiotemporal intelligence which is 
different from the spatial intelligence; I am saying that it seems to be the case that test 
psychologists have never entertained the idea that there may exist a special 
mechanism intelligence. Therefore, we simply do not know today whether or not a 
spatial and a spatiotemporal intelligence (or intelligence factors) coalesce. 
   The kind of ability I am focusing attention to is an ability to intuit mechanisms. It is 
a spectator's ability, and it must not be conflated with abilities to use mechanisms. The 
latter abilities are agent abilities. 
   Like philosophers of science, the test psychologists seem not to have realised the 
peculiarity of mechanism intuiting. As an exercise, the reader can try to understand 
the mechanism depicted in Figure 5 (picture x). It is the famous so-called lever 
escapement which was invented in the middle of the eighteenth century, and which 
was an important step in the development of the clock. 
   Our modern world, with its natural science and technology, could probably not have 
come into existence if man had lacked the ability to intuit mechanisms. Mechanisms 
abound in the natural sciences and in technology, but they are not really discussed 
among philosophers of science, nor are the non-empirical truths of mechanism 

                                                   
26 My survey conforms at least with [Eysenck 1972]. 
27 [Eysenck 1962] and [Eysenck 1966.] 
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geometry discussed by philosophers or theoretically minded technologists. And 
mechanism intuiting is not discussed among test psychologists. Curious!28 
 
 

 
Figure 5 
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