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Abstract 
The paper introduces a distinction between true metric and parametric quantities, units, and dimensions. It claims 

in its first part that these distinctions shed important light both on the base quantity amount of substance and 

VIM’s definitions of kind of quantity and quantity dimension. The second part is devoted to the unit one, and it 

claims that this unit must be regarded as a parametric unit, but also that it is not as needed as has been thought. 

The third part takes for granted that both the mole and the unit one are parametric units, and it argues that, for 

pedagogical reasons, the mole should be exchanged for the unit one, and the parametric quantity amount of 

substance be renamed to ‘elementary entities’. 

 

 

The metrologically new and central term of this paper is ‘parametric’. What the term is 

intended to mean should be clear from the way it is used in the paper, but some introductory 

words might make the reading easier. The prefix ‘para-’ has here the meaning of beyond. 

Parametric quantities and units are quantities and units that in a certain sense go beyond the 

ordinary, so to speak true, metric quantities and units used in measurements. Although the 

parameters spoken of are not parameters for numbers or quantity values, there is a kinship 

with the mathematical notion of parameter that is used when in the function ‘y = kx’ k is 

called a parameter. Before k is given a specific value, the function does not represent any 

specific straight line in the x-y coordinate system; and before parametric quantities and units 

are specified, they cannot give rise to any meaningful physical-chemical comparisons. The 

concept of comparison now introduced is, just like in the third edition of VIM (henceforth 

VIM3) 1, treated as a non-defined primitive concept. 
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The claim of this paper is that metrology would profit from distinguishing between true 

and parametric quantities, units, and dimensions. In particular, these distinctions have 

repercussions on how to look at the unit one, the mole, and the corresponding quantities and 

dimensions.  

 

 

PART I: Parametric Quantities, Units, and Dimensions 

 

1. The Peculiarity of the Unit Mole and the Quantity Amount of Substance 

 

The introduction of the base unit mole in the SI brochure differs in structure from the 

introductions of all the other six base units of the SI system; it contains two paragraphs, the 

others only one (corresponding to the first paragraph below). The brochure says:  

 

1. The mole is the amount of substance of a system which contains as many 

elementary entities as there are atoms in 0.012 kilogram of carbon 12; its symbol 

is “mol”.  

2. When the mole is used, the elementary entities must be specified and may be 

atoms, molecules, ions, electrons, other particles, or specified groups of such 

particles. 2, p. 115 

 

This means that, strictly speaking, the base quantity at hand is not just amount of 

substance, but amount (of substance) of elementary entities of a certain kind; briefly, 

amount(-of-substance)-of-Ep, where the subscript p functions as a parameter whose “values” 

are atoms, molecules, ions, electrons, etc. Therefore, the quantity amount of substance had 

better be called a parametric quantity. The main reason behind the requirement of paragraph 2 

is, I take it, that it makes no physical-chemical sense to compare amounts of different kinds of 

elementary entities; and comparisons of quantity values are what make a quantity a true 

metric quantity, i.e., a practically useful and interesting quantity. But to compare an amount of 

atoms with an amount of molecules would be like comparing a number of houses with a 

number of blocks.  

When the elementary entities spoken of in the definition become specified, then even the 

mole unit becomes specified. That is, the term ‘mole’ has in practice, ever since its 

introduction in the SI (1971), been used as if it means not just mole but mole-of-Ep. The mole 
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is not a base unit on a par with the six property base units; it cannot be used in significant 

physical-chemical comparisons until the subscript-parameter p in mole-of-Ep has been given a 

certain “value.” In analogy with the notion of ‘parametric quantity’, I will call the unspecified 

mole a ‘parametric unit’. Without a specification of what kinds of elementary entities 

expressions such as ‘2 mole’ and ‘5 mole’ refer to, these expressions cannot in relation to 

each other symbolize any meaningful physical-chemical comparison.  

If only for the reason now given, I think the SI system would become clearer if the 

difference between the mole and the other base units was stressed by calling the mole a 

‘parametric unit’ (the true units may well be called only ‘units’); and that the difference 

between amount of substance and the six property base quantities was stressed by calling 

amount of substance a ‘parametric base quantity’. But there is more to be said in favor of an 

introduction in metrology of these notions.  

 

2. VIM3:s Definitions of Kind-of-Quantity and Quantity Dimension  

 

My critical remarks on VIM3 in this section has affinities with some already put forward in 

Metrologia by L Mari 3, but my proposals for terminological improvements are not the 

same as his. Before bringing in the opposition ‘parametric x’ — ‘(true metric) x’, some other 

distinctions have to be made perfectly clear. VIM3 starts with a definition of quantity (def. 

1.1) followed (1.2) by one for kind-of-quantity (the hyphenation is added by me, but aligns 

with R Dybkaer 4). Two other VIM3 definitions relevant for my remarks are those of 

quantity dimension (1.7) and quantity value (1.19). Let me start with quantity:  

 

1.1 quantity = property of a phenomenon, body, or substance, where the property 

has a magnitude that can be expressed as a number and a reference 1, p. 2.  

 

 Unfortunately for the terminological simplicity of this paper, this definition does not 

supply us with the term ‘quantity’ that appears in the eighth edition of the SI brochure 2 

(henceforth SI8), which I have used in Section 1 and I will use again in Sections 3-6. Since 

phenomena and bodies are spatiotemporally localized individual entities, so are their property 

instances. That is, VIM3 supplies us, more precisely, with a definition of individual quantity 

(examples: specific length instances, specific mass instances, etc.). In the SI8, on the other 

hand, the natural interpretation of expressions such as ‘base quantity’ and ‘derived quantity’ is 
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that ‘quantity’ here means quantity in a general sense; rather, it corresponds to what VIM3 

calls ‘kind-of-quantity’ (see below). Therefore, I will for clarity’s sake add a parenthesis and 

in what follows call VIM3’s quantity ‘(individual) quantity’.   

 VIM3 then defines quantity value as an expression that is related to a spatiotemporally 

localized (individual) quantity, i.e., a quantity value is a representation of a (individual) 

quantity. The definition says:  

 

1.19 quantity value = number and reference together expressing magnitude of a 

(individual) quantity 1, p. 12, the parenthesis added.  

 

 It is explicitly said that the quantity value 5.34 m is the length of a given rod, and that the 

quantity value 0.152 kg is the mass of a given body. Therefore, for clarity’s sake, I will in 

what follows call VIM3’s quantity value ‘quantity value (of individual)’. 

 The SI8 brochure does not use the very term ‘quantity value’, but since 1 m is defined as 

something general (the length of the paths travelled by any light beam in vacuum during a 

certain specified time interval), the length 5.34 m becomes implicitly defined as being a 

general quantity value. Of course, in contradistinction to 1 m, 1 kg is not yet given a 

theoretical and general definition; it is still defined by means of the mass instance of the 

prototype at BIPM in Paris. Nonetheless the term ‘1 kg’ (and by implication ‘0.152 kg’) has a 

meaning that makes it refer to a general quantity value. Why? Answer: because it is tacitly 

taken for granted that all the mass instances that are exactly similar to that of the prototype 

have the mass 1 kg, too. If this was not the case, it would be impossible ever to substitute the 

prototype by a general theoretical definition.  

 When we speak of the quantity values of the meter scale and the kilogram scale, we are not 

talking about the quantity values (of individuals) of VIM3, but of general quantity values. If, 

to take an example, each of five different rods is 5.34 m long, then each can be ascribed the 

quantity value (of individual) 5.34 m, but the abstract meter scale must be ascribed the general 

quantity value 5.34 m. When SI8 says that one of the tasks of the BIPM is to “establish 

fundamental standards and scales for the measurement of the principal physical quantities 

2, p. 95,” it talks about scales in the abstract sense; scales whose values are general quantity 

values.  

 Whereas SI8 in effect treats quantities and quantity values as being general, VIM3 defines 

quantities and quantity values as being or expressing, respectively, individual 

spatiotemporally localizable entities. In my opinion, both the SI brochure and the VIM 
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document ought more explicitly than is done in SI8 and VIM3 spell out all the distinctions of 

the fourfold matrix below (some terms explained afterwards): 

 

 Quantity  Quantity value 

Individual  (individual) quantity 
(quantity instance)  

quantity value (of individual) 
(representation of a (individual) quantity) 

General  general quantity 
(a class of quantity instances or a universal) 

general quantity value 
(representation of a general quantity) 

Matrix 1. 

  

 In passing, I would like to make a brief remark on the question what terms for general 

quantities might refer to. In philosophy there are two main answers. So-called ‘realists’, 

Platonists in their way and Aristotelians in theirs, claim that each of the terms refer to a 

universal, whereas so-called ‘nominalists’, both class nominalists and resemblance 

nominalists, claim that each refers to a class of instances; more precisely, an equivalence 

class. (For this philosophical terminology, see D Armstrong 5.) Mari, for example, brings 

talk about classes into metrology 3, sec. 2; and so do today many people concerned with 

metrological issues in informatics and computer science. 

 Let us next look at VIM3’s definition of kind-of-quantity. According to Mari, and to some 

extent I agree, it creates a conceptual inconsistency in VIM3; length for example appears both 

as a (individual) quantity and as a kind-of-quantity 3, p. L11. I will, however, in my own 

way make the terminological improvements that I think are needed in order to set everything 

right. Here is the definition:  

 

1.2 kind-of-quantity = aspect common to mutually comparable quantities 1, 

p. 3. 

 

 The definition may at first sight be regarded as being ambiguous between being a 

definition of something individual and of something general. If ‘quantity’ in kind-of-quantity 

is understood according to VIM3’s definition of quantity, then it should be a definition of 

individual kind-of-quantity, but since the defining expression refers to something (an aspect) 

that different individual quantities have in common, it should be a definition of something 

general. However, since normally the defining expression takes precedence over the defined 
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expression, I will regard a kind-of-quantity as being something general. This interpretation is 

also supported by the following facts: (a) in Note 1 to the definition, length and energy in the 

general sense figure as examples of kinds-of-quantities; (b) in definitions such as those of 

measurement unit (1.9), ordinal quantity (1.26), and quantity-value scale (1.27)  the term 

‘kind-of-quantity’ is definitely used as if it means general kind-of-quantity. Therefore, in 

what follows, I will call VIM3’s kind-of-quantity ‘(general) kind-of-quantity’.     

 The aspect talked about is then what is general (common) both in two different (individual) 

quantities that have the same general quantity value, and in different (individual) quantities 

that have different general quantity values such as 1 m, 5.34 m, and 13 km. This implies that 

even the different corresponding general quantities have the same (general) kind-of-quantity. 

I take it for granted that general quantities inherit comparability from the corresponding 

(individual) quantities; direct physical-chemical comparability can only exist between 

spatiotemporal individuals.  

 Now, even though VIM3’s notion of ‘kind-of-quantity’ must mean general kind-of-

quantity, there is no problem in introducing a notion of ‘individual kind-of-quantity’, too. 

Where there is talk of a (individual) quantity, there can be talk of an individual kind-of-

quantity, too; where there is said to be a rod of 5.34 m, there can be said to be an instance of 

the (general) kind-of-quantity length, too. Matrix 1 above can be expanded into Matrix 2 

below (some terms explained afterwards): 

 

   Kind-of-quantity Quantity  Quantity value 

Individual  individual kind-of-

quantity 

(individual) quantity quantity value (of 

individual) 

General  (general) kind-of-

quantity  
(a class of  general quantities or 

a determinable universal) 

general quantity 

 
(a class of quantity instances or 

a determinate universal) 

general quantity 

value 

 

Matrix 2.   

  

Since VIM3 does not use the notions of ‘individual kind-of-quantity’ and ‘general 

quantity’, one might say that it hides the distinction between the general and the 

spatiotemporally individual in its distinction between quantity and kind-of-quantity; the added 

parentheses uncover this fact. 
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 Note that the possible classes referred to by ‘general quantity’ have as their members or 

objects instances, whereas the classes referred to by ‘(general) kind-of-quantity’ have as 

members or objects not instances but the aforementioned classes. A requirement, not 

mentioned in the matrix, is that a class of classes that constitutes a (general) kind-of-quantity 

must contain an ordering relation. Furthermore, classes of classes must not be conflated with 

so-called ‘superclasses’; Mari 3, sec. 2. If what is general is taken to be universals not 

classes, then a distinction between determinable and determinate universals (see 6) 

substitutes the distinction between classes of classes and classes. 

 Matrix 2 contains an obvious asymmetry. It has one column for Quantity and one for 

representations of quantities, the column Quantity value, but there is no column for 

representations of what can be found in Kind-of-quantity. As Quantity values express and 

represent Quantities, there should be something that express and represent Kinds-of-quantity, 

too; as a Quantity (individual or general) has a certain Quantity value, there should be 

something that (in the same sense of ‘has’) a Kind-of-quantity has. The closest one comes to 

such a representational entity in VIM3 is what it calls ‘quantity dimension’. Kinds-of-

quantities are said to have a quantity dimension, even though this verb does not appear in the 

very definition: 

 

1.7 quantity dimension = expression of the dependence of a quantity on the base 

quantities of a system of quantities 1, p. 4; the def. is shortened.  

  

 In its first example of a quantity dimension, VIM3 says that “the quantity dimension of 

force is denoted by dim F = L M T-2 2, p. 4.” As far as I can see, this seemingly simple 

sentence must mean something quite complicated; namely that the quantity dimension of 

force is referred to (denoted) by the expression ‘dim F’, and is the symbol list L M T-2, which, 

in turn, expresses how force is dependent on the SI base quantities. Since force is a (general) 

kind-of-quantity, the term ‘quantity’ in the defining expression of def. 1.7 does on this 

interpretation cover both VIM3’s term ‘(individual) quantity’ and its term ‘(general) kind-of-

quantity’. This interpretation of mine is clearly supported in a second example, where it is 

explicitly said that M L-3 is the dimension of mass density.  

 Thus the quantity dimension of length is the symbol L (referred to by ‘dim L’), and that of 

mass is the symbol M (referred to by ‘dim M’). Being base (general) kinds-of-quantity, length 

and mass are dependent only on themselves. Therefore one can say that the (general) kind-of-
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quantity length has the quantity dimension L, and that that of mass has the quantity dimension 

M, just as that of force has the quantity dimension L M T-2. Consequently, Matrix 2 can be 

expanded into Matrix 3 below; the columns of Kind-of-quantity and Quantity contain 

physical-chemical entities, whereas the columns of Quantity dimension and Quantity value 

contain representational entities; this is meant to be indicated by the arrows in these columns. 

(Later, Section 3, I will discuss a possible notion of ‘dimension’ that does not, like VIM3’s 

‘quantity dimension’, identify a dimension with a mere list of symbols.) 

 

  Kind-of-quantity  Quantity dimension Quantity   Quantity value 

Individual      

General      

Matrix 3.   

  

  Now, at last, it is time to present the observation of VIM3 that for me actualizes the 

distinction between parametric x and true metric x, and which I think implies that the term 

‘Quantity dimension’ in Matrix 3 should be read as meaning true quantity dimension. 

Sometimes there is a one-to-one relationship between a specific quantity dimension and a 

specific kind-of-quantity, but sometimes there is a one-to-many relationship. VIM3 observes: 

 

NOTE 2 Quantities of the same kind within a given system of quantities have the 

same quantity dimension. However, quantities of the same dimension are not 

necessarily of the same kind. 

EXAMPLE The quantities moment of force and energy are, by convention, not 

regarded as being of the same kind, although they have the same dimension. 

Similarly for heat capacity and entropy, as well as for number of entities, relative 

permeability, and mass fraction 1, p. 3. 

 

  Of the examples here mentioned, I will in this section discuss only the first two, 

moment of force in relation to energy and heat capacity in relation to entropy. The other 

examples are ascribed the dimension one, and will be discussed later; relative permeability 

and mass fraction in Section 3, and number of entities in Sections 4-5.  

In a note preceding the last quotation, VIM3 says that the terms ‘heat’, ‘kinetic energy’, 

and ‘potential energy’ refer to the same (general) kind-of-quantity, energy. This view is in 
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conformance with SI8’s statement (italics added): “In order to establish a system of units, 

such as the International System of Units, the SI, it is necessary first to establish a system of 

quantities, including a set of equations defining the relations between those quantities 2, 

p. 3.” Since, in classical physics, heat, kinetic energy, and potential energy (all measured in 

joule, J), can be transformed into each other and into work (= force times distance; N m = J), 

they can in a significant physical-chemical way be compared, and are so (according to 

VIM3’s definition 1.2) of the same (general) kind-of-quantity. By implication, they also have 

the same quantity dimension, that of energy: L2 M T-2.  

On the other hand, the (general) kind-of-quantity moment of force (for short: torque, i.e., 

force that causes rotation times perpendicular distance to the rotation center; N m = J 2, 

p. 119) has no such comparability relationship to heat, kinetic energy, potential energy, or 

any other energy form; even though it has the quantity dimension L2 M T-2 (force times 

distance), too. Despite being measured by the same unit, J, there is no significant physical-

chemical way in which energy and torque can be compared with respect to magnitude. And 

the same goes for heat capacity and entropy, whose common quantity dimension is 

L2 M T-2 Θ-1, and common measurement unit is joule/Kelvin; Θ is the quantity dimension of 

thermodynamic temperature. (Similar remarks can be found in W H Emerson 7.)   

 Some quantity dimensions, e.g., L and M, have a one-to-one relationship to a (general) 

kind-of-quantity, whereas others such as L2 M T-2 and L2 M T-2 Θ-1 have a one-to-many such 

relationship. In my opinion, this difference should be stressed even more than is done in 

VIM3. The former (one-to-one) kind of quantity dimensions should be regarded as true 

quantity dimensions, and the latter (one-to-many) kind of dimensions should be called 

‘parametric quantity dimensions’. The metrologically important difference is this: all the 

possible quantity values (of individuals) that can be connected to a true quantity dimension 

are physical-chemically comparable, but all the possible quantity values (of individuals) that 

can be connected to a parametric quantity dimension are not, since, by definition, they can 

bring in more than one (general) kind-of-quantity.  

 What now about the quantity dimension (in VIM3’s sense) of amount of substance, i.e., N. 

From what has already been said in Section 1, it follows that N must be a parametric quantity 

dimension. Everything that can be measured in terms of the mole is not physical-chemically 

comparable. On the other hand, everything that can be measured in terms of a certain mole-of-

Ep is physical-chemically comparable. This has an interesting consequence, not noted in 

VIM3. According to VIM3’s definition of (general) kind-of-quantity (def. 1.2), amount of 
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substance is not a (general) kind-of-quantity, but amount (of substance) of elementary entities 

of kind Ep is.  

 The last observation gives rise to a new question: what should amount of substance be 

called in VIM3 terminology? Since it is not an individual quantity (nor, by the way, a general 

quantity), not a general kind-of-quantity (nor, by the way, an individual kind-of-quantity), and 

not a quantity dimension (either general or individual) – what is it? As far as I can see, the 

best solution is (a) to bring in again the opposition between being a parametric x and a true x, 

(b) let VIM3’s term ‘(general) kind-of-quantity’ be short for ‘true (general) kind-of-quantity’ 

and (c) call amount of substance a ‘parametric (general) kind-of-quantity’. Put bluntly, this is 

in essence the same distinction as that made in Section 1 in terms of ‘true quantity’ and 

‘parametric quantity’.  

 Amount of substance ought in the SI8 brochure be called a ‘parametric quantity’ and in the 

VIM3 document a ‘parametric (general) kind-of-quantity’; its quantity dimension N ought in 

the VIM3 be called a ‘parametric quantity dimension’, and its unit, the mole, ought in both 

documents be called a ‘parametric unit’.    

Let me now move back again to the (general) kinds-of-quantity moment of force, energy, 

heat capacity and entropy. A parametric unit is a unit that needs a specification before it can 

give rise to physical-chemically meaningful comparisons. According to this characterization, 

the units joule and joule/kelvin must outside of specific contexts be deemed to be parametric 

units. Energy-joules cannot in a significant way be compared with torque-joules, and heat-

capacity-joule/kelvin not with entropy-joule/kelvin. Put more generally, if two different true 

(general) kinds-of-quantities (K1 and K2) are ascribed the same measurement unit, then this 

unit is a parametric unit. What the mole is to mole-of-Ep, the joule is to joule-of-Kp, and the 

joule/kelvin is to joule/kelvin-of-Kp; in the joule case, p can take at least the “values” energy-

joule and torque-joule, and in the joule/kelvin case at least the “values” heat-capacity-

joule/kelvin and entropy-joule/kelvin.  

 This being noted, it is time to present the fourth and last matrix: 
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Parametric 

kind-of-

quantity 

 

Parametric 

quantity 

dimension 

 

(True)  

kind-of-

quantity 

  

(True) 

quantity 

dimension 

 

Quantity  

 

Quantity 

value 

Individual        

General        

Matrix 4.   

 

 That ‘True’ is put within parenthesis means, as the parentheses in matrixes 1 and 2 do, that 

if you delete the whole parenthesis you will get the corresponding VIM3 term. This last 

matrix makes use of all the four abstract distinctions listed below. As far as I can see, all four 

are needed if one wants to make everything in basic metrology explicitly clear; the first three 

are not enough.  

 

1. general—individual (alternatively: universal—particular and class—member-of-

class); the two rows in the matrix. 

2. representation—what-is-represented (alternatively: expression—what-is-expressed 

and symbol—what-is-symbolized); indicated by the arrows in the matrix. 

3. class—class-of-classes (alternatively: determinate—determinable); the column 

Quantity in relation to Kind-of-quantity. 

4. parametric—true-metric; column one in relation to column three, and two in relation 

to four. 

 

VIM3 takes it for granted, quite rightly in my opinion, that there are in the language- and 

symbol-independent part of the world property instances, some with and some without a 

magnitude, and that Quantity values only belong to a representational medium. According to 

my experience, if the distinction representation—what-is-represented is not only present in a 

context, but is itself in this context explicitly represented (as it is and should be in VIM), then 

often many conceptual and terminological complications follow in the wake. Therefore, I am 

not especially astonished over the amount of complexity that is unfolded in Matrix 4.  
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PART II: The Parametric Unit One 

 

3. Unit One, Dimension One, and Dimensionless Quantities  

 

In this section, after some important preliminaries, I will discuss cases where derived 

quantities in the SI8 sense are allotted the measurement unit one. VIM3’s examples (see 

quotation in Section 2) are relative permeability and mass fraction, but for the sake of simple 

examples I have substituted relative permeability by relative length. (The SI8 notion of 

‘quantity’ becomes when translated into Matrix 4 terminology the notion: ‘general, true or 

parametric, kind-of-quantity’.)   

 In SI8, the terms ‘dimension’ and ‘quantity’ tend to become synonymous. Each base 

quantity “is regarded as having its own dimension,” and the dimension of a derived quantity is 

said to contain the same information about its relation to the base quantities as that “provided 

by the SI unit of the derived quantity as a product of powers of the SI base units” 2, p. 105. 

Probably, this identification tendency is due to the fact that only quantities are meant to be 

discussed. But I think it is important to keep the terms distinct; one reason being that the 

concept of ‘dimension’ (not to be conflated with VIM3’s ‘quantity dimension’) is in a specific 

sense logically prior to that of ‘quantity’. Every quantity has a dimension, but there may be 

physical-chemical dimensions that do not lend themselves to quantification; there is no 

metaphysical truth to the effect that all physical-chemical dimensions can be quantified. 

Shape, for instance, which plays quite a prominent role in science and technology, has not yet 

been quantified despite the fact that all shapes are comparable. The comparability is shown by 

the fact that two arbitrary determinate shapes can always, by a more or less continuous chain 

of intermediate shapes, be connected; such a connection is not possible to create between a 

shape and, on the other hand, a color, a mass, an electric charge, etc 6, sec. 3. Therefore, a 

quantity is not simply a dimension; it is a quantified dimension. Length and weight were 

assumed to be dimensions before they became quantified dimensions.  

 (In the terminology of VIM3, spatiotemporally localized determinate shapes should, since 

they lack a magnitude, be called ‘(individual) nominal properties’. Words such as ‘circular’ 

and ‘star-shaped’ could then be called (individual or general) ‘nominal property values for 

shape’. Shape as a counterpart to ‘kind-of-quantity’ could be called a ‘nominal kind-of-

property’, and the symbol S could be regarded as being the nominal property dimension of 

shape.)  
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 Shape is because of the comparability of all the determinate shapes a true dimension, but 

since it has not been quantified it lacks a unit. Necessarily, an un-quantified dimension is also 

a unit-less dimension. Soon, I will argue that even some derived quantities should be regarded 

as having a unit-less dimension. But, first, what more exactly is a dimension in the sense now 

at issue? 

 At least three different answers that catch something like a common core can be given. 

First, if the notion ‘(general) kind-of-quantity’ is taken as unproblematic, a dimension can be 

said to be what is obtained when from a certain (general) kind-of-quantity all ordering 

relations and measurement units are abstracted away. Second, if the notion of ‘property in the 

general sense’ is taken as unproblematic, a dimension is what all physical-chemically 

comparable general properties have in common; be these properties in principle quantifiable 

or not. Third, if only the notion of ‘property instance’ is taken as unproblematic, as a first 

step, a property in the general sense can be defined as (in the terminology of logic) an 

equivalence class of real and possible property instances; and then a dimension can be defined 

as a class of classes of all the equivalence classes that constitute comparable general 

properties. According to this third view, the four general quantity terms ‘1.7 kg’, ‘13.82 kg’, 

‘99 kg’, and ‘1000.001 kg’ refer to four different equivalence classes of real and possible 

mass instances (each class being based on a relation of exact similarity), and the term ‘dim M’ 

refers to the class of all possible such equivalence classes.  

If dimensions are understood in this sense, the distinction between parametric and true 

quantities made in Section 1 is automatically mirrored by a distinction between parametric 

and true dimensions. Amount of substance, for instance, is not only a parametric quantity, it is 

a parametric dimension, too; and so is, I will next argue, the dimension one. 

 About derived quantities and dimensions, the SI8 brochure makes the following general 

statement (the italics for whole words are added): 

 

The dimensions of the derived quantities are written as products of powers of the 

dimensions of the base quantities using the equations that relate the derived 

quantities to the base quantities. In general the dimension of any quantity Q is 

written in the form of a dimensional product, 

dim Q = Lα Mβ Tγ Iδ Θε Nζ Jη 

where the exponents α, β, γ, δ, ε, ζ, and η, which are generally small integers 

which can be positive, negative or zero, are called the dimensional exponents. The 
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dimension of a derived quantity provides the same information about the relation 

of that quantity to the base quantities as is provided by the SI unit of the derived 

quantity as a product of powers of the SI base units. 

There are some derived quantities Q for which the defining equation is such that 

all of the dimensional exponents in the expression for the dimension of Q are zero. 

This is true, in particular, for any quantity that is defined as the ratio of two 

quantities of the same kind. Such quantities are described as being dimensionless, 

or alternatively as being of dimension one. The coherent derived unit for such 

dimensionless quantities is always the number one, 1, since it is the ratio of two 

identical units for two quantities of the same kind 2, p. 106.  

 

Disregarding the difference between VIM3’s notion of ‘quantity dimension’ and SI8’s 

notion of ‘dimension’, more or less the same things are said in VIM3, but I would like to 

make one remark. In a note VIM3 rejects SI8’s complete equalization of the terms 

‘dimensionless’ and ‘dimension one’. Surely, VIM3 accepts both terms, but it regards 

‘dimensionless’ as being obsolete from a strict metrological point of view: “The term 

‘dimensionless quantity’ is commonly used and is kept here for historical reasons 1, p. 6.”   

Both SI8 and VIM3 claim that quantities of dimension one and dimensionless quantities 

have the same metrological unit, one. As far as I can see, the reason for this view is that 

metrological dimensional products and exponentiations are regarded as being completely 

analogous to arithmetic products and exponentiations; see the “since” in the second to last line 

in the SI quotation above. Relative length is then L L-1 = L0 = 1, and mass fraction is M M-1 = 

M0 = 1. The weakness of this analogy will be shown in Section 5 below; now some other 

relevant issues should be discussed.    

The metrologist J Valdés, which I will relate to, describes the difference between quantities 

of dimension one and dimensionless quantities somewhat differently. He connects only the 

dimension one to the unit one, and connects the term ‘dimensionless quantity’ to the view that 

such quantities need no metrological units at all. However, he regards it as only a 

conventional choice whether to talk of dimension one (and unit one) or of dimensionless 

quantities (and only pure numbers). He writes (italics added): 

 

     We are confronted with two logics: 
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     Logic A considers the ratio of two quantities as a new quantity. If adding two 

masses m1 and m2 we obtain again a mass, then multiplying m1 by m2 we obtain a 

new quantity in kilogram square, and dividing m1 by m2 we should also obtain a 

quantity. Why should division be a special mathematical operation conducting to 

no quantity at all? The new quantity, though dimensionless, must have a unit. The 

unit should have a name. --- 

     Logic B considers that dividing one quantity by another of the same kind 

merely expresses the number of times that one quantity fits into the other. --- If 

the ratio of both quantities of the same kind is not a new quantity, what is it? It is 

just a number. ---  

     Logic A, or Logic B? It is a matter of choice 8, pp. 307-8. 

 

Not all metrologists, however, agree that this is a matter of pragmatic choice. One hard 

critic of Logic A is W H Emerson 9, 10, 11, 12. He claims that “All dimensionless quantities 

now find themselves saddled with, in my view, meaningless and unnecessary ‘units’ 10, 

p. L27,” and that (italics added) “Of the dimensionless quantities, --- few people would 

consider them all to be quantities of the same kind. Differently defined, dimensionless 

quantities are not comparable 11, p. L34.”   

From my point of view and terminology, Emerson rests much of his case on the 

requirement that a unit should be a unit only in relation to a true quantity; in other words, he 

wants to keep the SI system free from parametric units. If this premise of his is accepted, I 

find his reasoning conclusive. Let me frame in my own words what I regard as the central 

objection to the unit one as a non-parametric unit for relative quantities.  

Both relative length (original dimension: length/length) and mass fraction (original 

dimension: mass/mass) should according to the present SI8 system be measured by the same 

metrological unit, one, and be ascribed the same dimension, dimension one. Now, if one 

knows only that two rods A and B have the mass fraction 5 mass/mass and that the rods C and 

D have the fraction 3 mass/mass, then it is impossible to draw any conclusions about the mass 

fractions A/C and A/D; and the same is of course true if we exchange mass/mass for 

length/length. Similarly, if A and B has the mass fraction 5 mass/mass and C and D has the 

relative length 3 length/length, it is impossible to draw any conclusions about a ratio between 

A and C and A and D. Nonetheless there is a relevant difference between the last example and 

the first two ones, which brings home Emerson’s point. 
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Even if not known, there is always a mass fraction (and a relative length) also between B 

and C; and as soon as this fraction becomes known, the mass fractions (and, alternatively, the 

relative lengths) A/C and A/D can be calculated, and in a significant way compared with that 

of A/B. However, mass fractions and relative lengths can never in such a sense be compared 

with each other; it is always impossible to compare in a physical-chemical meaningful way 

A/B mass/mass with, for instance, those of A/B, A/C, and A/D length/length. This means that 

if both mass fraction and relative length are measured by the unit one, then this unit is a 

parametric unit. Consequently, the dimension one is only a parametric dimension.   

To my mind, the only way to defend the SI system against Emerson’s wish to delete the 

unit one is to introduce the notion of ‘parametric unit’, and regard unit one as being a 

parametric unit. A parametric unit is, to repeat, a unit with a qualitative parameter that needs 

to be given a specific “value” before it can give rise to meaningful physical-chemical 

comparisons.  

In Section 1, I claimed that mole in effect means mole-of-Ep; in Section 2, similarly, I 

claimed that joule out of context means joule-of-Kp. What I have now said implies that since 

the unit one is a parametric unit, it must (when isolated from specific contexts) mean 

unitd/unitd, where the subscript d is a parameter for (at bottom) the base property dimensions 

of the SI system.  

(Within parenthesis, I would like to point out that the issue whether dimension one and unit 

one are true or parametric dimensions and units, must not be conflated with the issue whether 

or not plane angles can be ascribed the dimension relative length. According to the SI system 

they can, but according to Emerson 9 they cannot. In his (and my) view, the fact that radian 

values are defined as the arc length of an angle subtended at the center of a circle divided by 

the radius length of the same circle, does not turn the true dimension plane angle into any true 

dimension length/length, and, therefore, neither into the parametric dimension called 

‘dimension one’.)  

Let me now turn to Logic B. To start with, I will expand the shortened quotation from 

Valdés, and also insert two explanations (IJ) into it. 

 

Logic B considers that dividing one quantity by another of the same kind merely 

expresses the number of times that one quantity fits into the other. This “other” 

may be the accepted SI unit, in which case the number obtained through division 

is the result of a measurement, not a new quantity IJ (i): as when 5 times the 
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standard meter results in 5 m. If this “other” is different from the SI unit of the 

underlying quantity, we may create a second unit for the same quantity IJ (ii): if 

rod A is five times rod B and rod B is not measured by an SI unit, we can make 

rod B a standard length and truly say that rod A has the length 5 rod-B. If the 

ratio of both quantities of the same kind is not a new quantity, what is it? It is just 

a number 8, p. 307.  

 

Point (i) makes clear the fact that all the SI8 general quantity values except those for the 

standard units are relative values; moreover, ratio values, since all SI8 quantities belong to so-

called ratio scales (not to so-called ‘interval scales’ or ‘differential property-value scales’ 4, 

chapter 17). Point (ii) makes clear the fact that in any individual relative quantity such as 

length-of-A/length-of-B and mass-of-A/mass-of-B, the property instance in the denominator 

is a possible standard unit. This being so, why do some metrologists here want to talk about 

pure numbers? Isn’t, by the way, the very term ‘dimensionless quantity’ a contradiction in 

terms? Do we not exclusively have either the purely mathematical number line with its 

numbers or a quantity with its general quantity values (i.e., numbers connected to a 

metrological unit)? Can there be something in-between? Yes, there can, but I find the term 

chosen for it, ‘dimensionless quantity’, very misleading; the adequate name is ‘unit-less 

quantity’. Let me explain. 

Now and then, e.g. in Dybkaer 4 and Emerson 7, 11, quantities (Q) are presented in the 

symbolic form: 

  Q = Q ∙ Q,   

where Q represents only a pure numerical value, a number, and Q represents only a unit 

(VIM3: reference). However, in order to account for the fact that one and the same true 

quantity and true dimension can be ascribed different units, it has to be noted that there is here 

a third component implicitly present, namely the dimension of Q. The unit Q is not just a 

unit; it is a unit of a certain dimension. Unit transformation formulas such as ‘1 meter = 

1.0936 yards’ make sense only if it is assumed that they relate units of the same true 

dimension; in the case at hand we have ‘1 meter of length = 1.0936 yards of length’. There 

can be no physical-chemically significant transformation formulas for units that belong to 

different true dimensions. Therefore, when all components of quantities are made explicit 

(i.e., the dimension is not regarded as hidden in the unit Q), the symbolic form for an 

arbitrary quantity looks like this: 
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   Q = Q ∙ Q ∙ (dim Q).  

 In statements that report results of measurements this tripartite structure often comes out 

automatically. Here are some simple examples related to a body called ‘b’: ‘b is 1 m long’, ‘b 

has a mass of 2 kg’, and ‘b has a temperature of 283 K’. In all three cases we find a number 

Q (1, 2, 283, respectively), a unit Q (m, kg, K), and a dimension (dim Q) (length, mass, 

temperature).    

Let us now, using this symbolism, take a new look at relative length and mass fraction. The 

numerator and denominator of these quantities (length-of-A/length-of-B and mass-of-A/mass-

of-B) belong to the same kind-of-quantity and true dimension, but no actual general standard 

unit is needed, since each of the two magnitudes at hand may be taken as a temporary and 

local standard for the other one. In such situations, therefore, the unit symbol Q can be 

deleted from the originally tripartite symbolic form, and relative length and mass fraction can 

symbolically be represented as:  

  Q = QA/QB ∙ dim (dim Q/dim Q). 

If, instead, the short bipartite symbolic formula (Q = Q ∙ Q) is used when the unit 

symbol is taken away, the symbolic form of relative length and mass fraction becomes only:  

  Q = QA/QB. 

And here on the surface it really (but wrongly!) looks as if the quantity Q can be identified 

with only a number (QA/QB); and, furthermore (still wrongly!), that it is a quantity that 

has no dimension at all, and so deserves the name ‘dimensionless quantity’. As shown, 

however, the relative quantities we obtain from the basic tripartite formula have the 

dimension dim Q/dim Q, and are not dimensionless, only unit-less.  

The fact that the so-called dimensionless quantities are not dimensionless is in a sense 

noted in the SI8 brochure (which, remember, claims that dimensionless quantities have the 

unit one): “In a few cases, however, a special name is given to the unit one, in order to 

facilitate the identification of the quantity involved 2, p. 120.” Why is there, I ask, a problem 

with “the identification of the quantity involved” if all dimensionless quantities are the same 

kind of quantity? Why is there a need to distinguish one kind of dimensionless quantity from 

another? Answer: because the so-called dimensionless quantities are not in fact 

dimensionless. 

 Seen from my position, Logic A metrologists rightly think that even ratios of quantities 

must have a dimension, but then mistakenly think that therefore these quantity ratios have to 

have a standard unit, too. Logic B metrologists, on the other hand, rightly observe that even 
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ratios that are not purely mathematical can exist as numbers without a unit, but then 

mistakenly draw the conclusion that such ratios should be considered dimensionless. 

Combining my remarks to both these “logics,” the following views emerge: (i) the unit one 

is in relation to relative quantities superfluous as a true metric unit, since the dimensionless 

quantities are not in fact dimensionless, only unit-less; (ii) if the unit one and its dimension 

one is needed anywhere (see Section 6), then the unit one has to be considered a parametric 

unit and dimension one a parametric dimension. And then I would like to stress a thing about 

the unit one that the SI8 brochure says (italics added): “The values of all such quantities 

quantities of dimension one are simply expressed as numbers, and the unit one is not 

explicitly shown 2, p. 120.”  

To accept both Logic A and Logic B is neither a theoretical solution to the mistake of 

Logic A nor to that of Logic B. I think both the mistakes displayed might be caused by an 

insufficient analysis of the relationship between general quantity values and numbers 

(discussed in Section 4 below) as well as of the relationship between arithmetic 

multiplications of numbers and metrological multiplications of units and of dimensions 

(discussed in Section 5).  

 

4. Unit One as an Eighth Base Unit 

 

The SI8 brochure lists exactly seven base quantities and base units 2, pp. 105, 111-116, but 

in passing there is also an eighth base quantity and base unit acknowledged (italics added): 

 

There are also some quantities that cannot be described in terms of the seven base 

quantities of the SI at all, but have the nature of a count. Examples are number of 

molecules [---]. Such counting quantities are also usually regarded as 

dimensionless quantities, or quantities of dimension one, with the unit one, 1 

2, pp. 105-6. 

 

All of these counting quantities are also described as being dimensionless, or of 

dimension one, and are taken to have the SI unit one, although the unit of 

counting quantities cannot be described as a derived unit expressed in terms of the 

base units of the SI. For such quantities, the unit one may instead be regarded as a 

further base unit 2, p. 120. 
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The SI system does in this way accept an eighth base quantity, which is either 

dimensionless or of the dimension called ‘dimension one’; base unit one, symbol 1. Hereby, 

somewhat remarkably and in a peculiar way, dimension one and unit one are placed both 

outside of the traditional seven base units system (as in the quotations above) and inside it (as 

the dimension and unit for relative quantities). But, as I will now show, there is no need to add 

such a base unit to the SI system, not even as a parametric unit; compare Emerson 7.  

 Let me start from scratch with some fundamental remarks about the distinction between 

(purely mathematical) numbers and general quantity values.  

If asked ‘please, point at the number 1’, one does not at all know what to point at. In this 

sense (at least), we do never in the spatiotemporal world meet any numbers. Nonetheless, we 

meet something related. Instead of numbers we can meet unities of a certain kind, i.e., 

quantity values. Terms such as ‘1 pebble’, ‘2 chairs’, ‘3 flowers’, ‘4 horses’, ‘5 birds’, 

‘6 atoms 12C’, ‘7 water molecules’, etc. can be used to refer to entities in the world. And there 

is no problem in pointing at, for instance, 1 pebble. Bringing in metrology we can say, either 

that kinds of things such as pebbles, chairs, and molecules are their own metrological units, 

or that in relation to such kinds there is no distinction to be made between a quantity and its 

metrological unit. Linguists call terms of the kind now used ‘count nouns’, and I will call the 

entities referred to ‘count noun kinds’.  

Only entities of the same count noun kind can in a meaningful way be added. Additions 

such as ‘4 horses + 5 birds’ and ‘6 atoms + 7 molecules’ have no sum that makes sense. 

However, on a more abstract level a corresponding addition is possible. Since both horses and 

birds are animals, and ‘animal’ is a count noun, they can as animals be added: 4 animals + 

5 animals = 9 animals. Similarly, since both atoms and molecules are elementary entities, and 

‘elementary entity’ is a count noun, atoms and molecules can as unspecified elementary 

entities be added: 6 elementary entities + 7 elementary entities = 13 elementary entities.  

Now, climbing the ladder of abstraction to the very top, we encounter the most abstract 

count noun kind possible: entity. Classified only as entities, everything whatsoever can be 

added. For instance, horses, molecules, nations, dreams, and instances of pain: 4 entities 

(horses) + 5 entities (molecules) + 21 entities (nations) + 2 entities (dreams) + 13 entities 

(instances of pain) = 45 entities.  

Such abstract entity additions, however, are of no more practical use than additions of 

purely mathematical numbers, since on this topmost abstract level no kinds of things are 
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differentiated from other kinds of things.1 Therefore, there is no need to add to the SI system 

an eighth base quantity that should take account of entities that have “the nature of a count.” 

Such a quantity will have no function that is not already taken care of by the numbers. Using 

the symbolism introduced in Section 3, the quantity expression ‘7 electrons’ fits the unit-less 

form ‘Q = 7 ∙ (dim electron)’; the expression ‘5 molecules’ fits the form ‘Q = 5 ∙ (dim 

molecule)’; and ‘4 horses’ fits ‘Q = 4 ∙ (dim horse)’. Every count noun refers to something 

that from a metrological point of view can be regarded as at the same time both a (true) 

dimension and a unit.  

Terms such as ‘water’, ‘snow’, and ‘furniture’, do not function the way count nouns do; 

they cannot immediately in a meaningful way be connected to a numeral. Expressions such as 

‘2 water’, ‘3 snow’, or ‘4 furniture’ make no sense, and linguists have baptized these terms 

‘mass nouns’.2 What mass nouns refer to cannot without further ado be counted. In order to 

estimate, for instance, amount of water, one has to introduce a unit such as bottle, glass, or 

molecule. The expressions ‘bottle of water’, ‘glass of water’, and ‘molecule of water’ function 

the way count nouns do; by means of bottles, glasses, and molecules different amounts of 

water can be estimated. Out of the term ‘furniture’ the term ‘furniture item’ can be created, 

and as soon as it is decided what counts as a furniture item, then even amount of furniture can 

be estimated.   

Terms for physical-chemical substances such as ‘12C’ and ‘H2O’ are out of context 

ambiguous between being mass nouns and count nouns. But always when they are shorthand 

for ‘12C atom’ and ‘H2O molecule’, respectively, they are count nouns and refer to count noun 

kinds. This means, among other things, that their amount/quantity/number can be estimated 

independently of the mole unit; an issue that I will address in Section 6.  

All the terms for the base property dimensions in SI8 function the way mass nouns do. 

Expressions such as ‘1 length’, ‘1 mass’, and ‘1 temporal duration’ are just as meaningless as 

‘1 water’ and ‘1 snow’. But all the terms for the corresponding base units, e.g., ‘meter’, 

‘kilogram’, and ‘second’ function the way count nouns do, and refer to count noun kinds. 

Expressions such as ‘1 meter’, ‘2 kilogram’, and ‘3 seconds’ make perfect sense. The base 

property units of the SI are their own metrological units. Therefore, in order to be used in 

practice, no such unit needs to be connected to a further metrological unit such as the unit one. 
                                                             
1 It might be argued that, in fact, the purely mathematical numbers 1, 2, 3, etc. are nothing but the most abstract 

quantity values possible, namely 1 entity, 2 entities, 3 entities, etc., but I leave this subtle question to the 

philosophy of mathematics.  
2 This term ‘mass’ has of course nothing with the SI base quantity mass to do. 



22 
 

And to claim that entities that have the nature of a count (“counting quantities”) need the 

metrological unit one, is just as unreasonable as to claim that the base property units of the SI 

ought to be connected to the metrological unit one.  

 

5. Metrological Multiplication Differs Radically from Arithmetic Multiplication 

 

VIM3’s definition 1.21 says: “quantity calculus = set of mathematical rules and operations 

applied to quantities other than ordinal quantities 1, p. 13.” Let me now again from the 

SI8 brochure quote the following quantity calculus passage about dimensions: 

 

In general the dimension of any quantity Q is written in the form of a dimensional 

product, 

dim Q = Lα Mβ Tγ Iδ Θε Nζ Jη 

where the exponents α, β, γ, δ, ε, ζ, and η, which are generally small integers 

which can be positive, negative or zero, are called the dimensional exponents 2, 

p. 106.    

 

If one sticks to integers (which I think we can do here), it makes good sense to say that 

arithmetic exponentiation is repeated multiplication (63 = 6  6  6), and that multiplication is 

repeated addition (3  5 is equivalent to 3 + 3 + 3 + 3 + 3 and 5 + 5 + 5). Arithmetic 

multiplications of integers have always a clear-cut connection to arithmetic additions, but 

metrological multiplications have no similar relation to any corresponding metrological 

addition. Furthermore, they cannot have, since there is no such thing as meaningful additions 

of physical dimensions or metrological units. For instance, whereas the addition 3 + 3 + 3 + 3 

+ 3 = 15 is equal to the multiplication 3  5, the addition 3m + 3m + 3m + 3m + 3m = 15m is 

not equal to anything that contains a unit multiplication m ∙ m or a dimensional multiplication 

L ∙ L; compare Emerson 4. In additions of five quantity instances such as (Q∙Q) + 

(Q∙Q) + (Q∙Q) + (Q∙Q) + (Q∙Q), the result is always 5  Q ∙ Q; the five 

instances of the metrological unit Q are not added.  

This clear difference between arithmetic and metrological multiplication means that what 

is true of arithmetic multiplications (e.g., a a-1 = a0 = 1, a  0) need not necessarily be true also 

of metrological multiplications. If no special reasons are supplied, metrological 
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multiplications such as m m-1 and L L-1 cannot be said necessarily to be equal to m0 = 1 and 

L0 = 1, respectively. The SI8 brochure, however, seems to be of another opinion (italics 

added): 

 

Certain quantities are defined as the ratios of two quantities of the same kind, and 

are thus dimensionless, or have a dimension that may be expressed by the number 

one. The coherent SI unit of all such dimensionless quantities, or quantities of 

dimension one, is the number one, since the unit must be the ratio of two identical 

SI units. The values of all such quantities are simply expressed as numbers, and 

the unit one is not explicitly shown. 2, p. 120 

 

Since so far I have nowhere seen any special reasons in support of the view “must be the 

ratio,” I think that metrologists have better regard the dimensions of relative length and mass 

fraction as being the un-reducible dimensions L L-1 and M M -1, respectively. Put generally: 

 

 the dimension (dim Q/dim Q) equals neither the dimension one nor the pure 

number 1, it is un-reducibly dim Q/dim Q. 

 

This view means also that metrological dimension multiplications such as 

(dim Q)3 (dim Q)-2 are not equal to (dim Q); they are nothing but (dim Q)3 (dim Q)-2. For 

instance, the dimension of rainfall is volume per area, not length; its unit is m3 m-2 not m, 

even though many rain-gauges report rainfall quantities in values such as ‘millimeter rain’. 

More words about this issue (and the next one) can be found in Emerson 11, 12. 

What then about multiplications of dimensions and units that do not give rise to relative 

quantities? What about, for instance, L2 with unit m2, L T-1 with unit m s-1, and M L-3 with 

unit kg m-3? How can they be dimensions and units for area, speed, and density, respectively? 

In my opinion, out of context, they cannot. When area is ascribed the dimension L2, the 

context makes it clear that the two L has to be orthogonal to each other, something which is 

not and cannot be said in the SI, since it restricts itself to scalar quantities. When speed is 

ascribed the dimension L T-1, the context has it that L and T are related to one and the same 

movement. When density is ascribed the dimension M L-3, the context makes it clear that M 

and L-3 are properties of one and the same material thing. In abstraction, these metrological 

multiplications have no specific physical-chemical significance. 
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PART III: The Parametric Unit Mole 

 

6. Rename ‘Amount of Substance’ to ‘Elementary Entities’ and Exchange the Mole for 

the Unit One 

 

I will now connect back to Section 1. To accept that amount of substance is a parametric 

quantity and its unit mole a parametric unit, is to open up for a new look at this quantity and 

its unit in other respects, too. 

 In the 1977 paper “Amount of substance and the mole” 13, the chemist and metrologist 

M L McGlashan found it necessary to write a paper in which he tried to correct wrong 

interpretations of the newly in the SI introduced mole. I quote: 

 

Although widely used by chemists, the physical quantity called amount of 

substance and its SI unit called the mole are not necessary in science. It would be 

perfectly feasible to deal always with molecular quantities and at least in physics 

that is often done. --- Nevertheless, for historical reason it is customary in 

chemistry (and in physics too) to use the redundant physical quantity amount of 

substance and its SI unit the mole. So long as they are used they should be used 

correctly. The rest of this article will be about their correct use 13, p. 276. 

  

 However, outside of chemistry, the mole has continued to suffer from misinterpretations 

that no other base unit has suffered from. For instance, at least as late as February 2008 (but 

later corrected), Wikipedia falsely said that “A mole is much like ‘a dozen’ in that both are 

absolute numbers (having no units)”, and another internet dictionary Whatis.com still says 

(February 2010) that “The mole is the only fundamental SI unit that is dimensionless.” That 

is, in spite of the fact that all the editions of the SI unambiguously proclaim that the mole is a 

unit and not a pure number, and that it has a dimension, namely amount of substance, well-

meaning people have made claims to the contrary. I hope to be able to show that some fault is 

on both sides; neither the SI metrologists nor the quoted internet metrologists use the notions 

of ‘parametric unit’ and ‘parametric quantity’, but this is needed if one should not get lost. 
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 The first of the two paragraphs in which the SI brochure introduces the mole can also, 

since the number of atoms in 0.012 kilogram of carbon 12 is known and equal to the 

Avogadro number (a purely mathematical entity that I will symbolize AN), be stated thus: 

 

1*. 1 mole is the amount of substance of a system which contains AN elementary 

entities; its symbol is “mol”.  

 

And many scientists present the mole in this way. Here is a quotation from one well 

established introduction to physical chemistry: “A mole of some substance is defined as an 

amount of that substance which contains Avogadro’s number of elementary units” 14, p. 9.  

Let me again stress that it is here spoken of the Avogadro number AN (= 6.022 14 × 1023); 

not the Avogadro constant NA, which is a number connected to the parametric unit mole (NA 

= 6.022 14 × 1023 mole-1). The relation between the Avogadro constant and the Avogadro 

number is: NA = AN mole-1.  

The importance of the distinction between the Avogadro constant and the number is easily 

shown. In definition 1*, the phrase ‘contains AN elementary entities’ cannot be exchanged for 

‘contains NA (= AN mole-1) elementary entities’, since this would make the definition circular; 

the mole would in such a case appear not only as that what is to be defined, but in the defining 

expression, too.  

Since 1 mole is the amount of substance of a system which contains AN number of 

elementary entities, the mole can be as directly connected to the Avogadro number as to the 

Avogadro constant. And it has been argued that the former connection should be made the 

primary one:   

 

It is proposed that the Avogadro constant be converted to a number, the 

‘Avogadro number’, and that the mole be linked to this number. The unit of the 

amount-of-substance would be this particular number of specified, identical 

entities. This would not only bring greater clarity and simplicity to the SI, but 

would also lead to a better understanding of the mole by the physics and 

chemistry communities, as well as by the general public. 15, p. 11 

 

But if this proposal is combined with the insight that the mole is a parametric unit, then 

also another proposal becomes reasonable: rename the parametric quantity and dimension 

called ‘amount of substance’ to ‘elementary entities’. Let me explain the route.  
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An application of the term ‘amount of substance’ requires (see Section 1) an expression of 

the form ‘amount (of substance) of elementary entities of kind p’. Here, first, the parenthesis 

can be deleted; this is explicitly said in the SI8 brochure 2, p. 115. Second, if an actual 

application value is added, an expression of the form ‘n mole amount of elementary entities of 

kind p’ appears. But here, third, the phrase ‘amount of’ is redundant; the expression ‘n mole 

elementary entities of kind p’ conveys the same information as the longer expression. 

Therefore, fourth, the parametric quantity and dimension amount of substance could just as 

well be called ‘elementary entities’. The plural form might be taken as indicating that 

‘elementary entities’ names a parametric quantity and dimension, i.e., a quantity and 

dimension that necessarily refers to other but true metric quantities and dimensions. If this 

renaming proposal is accepted, definition 1* can be replaced by this one: 

 

1**. 1 mole is the number of elementary entities of a system which contains AN 

such entities; its symbol is “mol”.  

 

When the fact that the mole is a parametric unit is made explicit, i.e., Ep is introduced, the 

following equalities appear (below, n is only a variable for mole-of-Ep and N only for 

elementary entities of kind Ep):  

 

 n mole-of-Ep = N entities-of-Ep / AN  

 n mole-of-Ep = (n  AN) Ep  

 1 mole-of-Ep = AN Ep  

 

It may be argued, however, that these equalities do not meet the requirement that both the 

sides of such quantity equalities must have the same dimension. Let us look at the last 

equality (1 mole-of-Ep = AN Ep). On the left hand side there is the unit mole and its dimension, 

but on the right hand side there seems to be no unit at all. Now, if the mole on the left hand 

side is not a parametric unit but a true unit on a par with the other base units, metrology says 

that we cannot possibly have the Avogadro number AN on the right side; the number AN has to 

be exchanged for the Avogadro constant NA. So far, I have no objections. But there is more to 

be said.  

Let now the mole be what it really is, namely a parametric unit. Then 1 mole-of-Ep = AN Ep 

passes the dimension test if there is a corresponding parametric unit on the right side. And we 
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can, at least without immediately doing violence to the SI8 brochure, try to insert one, namely 

the parametric unit one discussed in Sections 3 and 4. That is, we can try to reverse the SI8 

statement that “values of all such quantities quantities of dimension one are simply 

expressed as numbers, and the unit one is not explicitly shown 2, p. 120.” We can insert unit 

one, whereby we obtain: 

 

 1 mole-of-Ep = AN one-of-Ep     

 

If the unit one is, as here, allowed to have elementary entities as its dimension – and 

nothing tells against that – then the equality does meet the dimension test; on both the left and 

the right hand side of the equality we find the dimension elementary entities. This fact shows 

that the mentioned Wikipedia mistake (the mole is only a mathematical number) and the 

Whatis.com mistake (the mole has no dimension) were not completely ungrounded. If one 

looks at the equality 1 mole-of-Ep = AN Ep, and takes the right hand side both literally (i.e., as 

having no unit one hidden) and as pre-given, then the mole must be just a number, and so be 

lacking a dimension, too. Really, the sentence ‘1 mole-of-Ep = AN Ep’ is in appearance 

structurally similar to the sentence ‘1 dozen-of-Ep = 12 Ep’, which had a counterpart in the 

Wikipedia article referred to. If the SI system had contained a distinction between true and 

parametric units, these internet metrology mistakes could have been avoided.  

If one starts to think in terms of parametric quantities and parametric units, it seems to me 

as if a proposal such as the one below comes naturally; and has, outside of some areas within 

physical chemistry, great pedagogical advantages:  

 

(i) rename in the SI the parametric quantity now called ‘amount of substance’ to 

‘elementary entities’ (the symbols n and N need not be changed); 

(ii) exchange in the SI the parametric unit mole-of-Ep for the parametric unit one-of-Ep; 

use then when needed the unit transformation formula 1 one-of-Ep = 1/AN mole-of-Ep; 

(iii) use the existing SI8 recommendation to delete the unit one, and write always ‘1 one-

of-Ep’ as ‘1 Ep’ (i.e., talk only of numbers and specified kinds of elementary entities is 

enough).  

  

In my opinion, if accepted, this proposal ought to have the consequence that mole-of-Ep 

suffers the same fate in relation to Ep as, for instance, the units minute, hour, and day have 
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done in relation to second, and litre in relation to meter3. That is, the mole becomes a non-SI 

unit accepted for use with the SI. So understood, the proposal does not in any way imply that 

chemists have to stop using the unit mole.   

Let me, however, by means of one single example show what a complete drop of the mole 

might imply. The gas constant R in the ideal gas law is today ascribed the unit joule per kelvin 

per mole (J K-1 (mol-of-Ep)-1); according to the proposal, R should instead be ascribed the 

non-coherent unit joule per kelvin per Avogadro number of elementary entities (J K-1 (AN 

Ep)-1). This, in turn, means that the mole formulation of the gas law would be deleted in favor 

of the formulation containing the Boltzmann constant.  

What has just been said also sheds light on the unexplained notion of ‘universal constant’ 

that figures on one single page in SI8 and never in VIM3. The equality n(X) = N(X)/NA in the 

quotation below means n mole of X = N entities of X divided by the Avogadro constant, i.e., 

we find here the Avogadro constant with the parametric dimension mole-1. Here is the 

paragraph:  

 

The definition of the mole also determines the value of the universal constant that 

relates the number of entities to amount of substance for any sample. This 

constant is called the Avogadro constant, symbol NA or L. If N(X) denotes the 

number of entities X in a specified sample, and if n(X) denotes the amount of 

substance of entities X in the same sample, the relation is 

n(X) = N(X)/NA. 

Note that since N(X) is dimensionless, and n(X) has the SI unit mole, the 

Avogadro constant has the coherent SI unit reciprocal mole 2, p. 115. 

 

The equality n(X) = N(X)/NA is no natural law; it is only a result of the stipulation that n is 

a variable for moles and N a variable for number of entities. The Avogadro constant NA is 

called a universal constant, but this does not mean that in science it plays the role of a 

fundamental constant such as the Planck constant and the constant c0, the speed of light in 

vacuum. The fact that the Avogadro constant figures in the transformation formula between 

the gas constant (R) and the Boltzmann constant (k), k = R/NA, does not turn it into a 

fundamental constant. This transformation formula merely reflects the fact that pV = nRT and 

pV = NkT are two different but equivalent formulations of one and the same natural law, the 

ideal gas law. The mole formulation of this law is by no means a theoretical necessity that has 

to be retained whenever the ideal gas law is on the agenda. 
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The view that the mole is only a parametric unit is, I think, worth thinking through; it can 

affect traditional metrology.  
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