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Abstract  In this paper it is argued that the SI system has not carefully enough taken into account the differences 
that exist between stoichiometry and physics, and because of this neglect forced the kind-of-quantity amount of 
substance into a false form. The mole is not a unit such as the metre, the kilogram, and the second. It is a “unit” 
only in the sense in which purely mathematical scaling factors can be called units.  
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Introduction: discrete entities and continuous properties 
 
Atoms and molecules are naturally discrete entities, but in the SI system [1] the dimension (or kind-of-quantity) 
amount of substance has nonetheless been forced to conform to a structure that fits only naturally continuous 
kinds-of-quantity, i.e., quantities such as length, mass, time duration, and so on. This is a mistake; even though 
an explainable one. In the SI system, unhappily, the mole is regarded as a unit of the same kind as the metre, the 
kilogram, and the second. The main difference can be stated thus: in order to count or estimate numbers of a 
discrete kind-of-quantity no measurement unit has to be introduced, but a continuous kind-of-quantity cannot 
possibly be used to measure or count anything before a conventional unit has been imposed on it (sect. 6. 3 of 
[2], [3]). Discrete kinds-of-quantity are, if I may speak so, their own units, but continuous kinds-of-quantity are 
not.  

One consequence of the difference is the following. It is a matter of convention whether we should regard 
1 kg as the standard unit and 1 g as a submultiple of this unit, or regard 1 g as the standard unit and 1 kg as a 
multiple unit. But it is not a matter of convention whether we should regard 1 molecule H2O as a unit and 1 
dozen molecules H2O as a multiple unit, or regard it the other way round. Here, the “standard unit” must be the 
naturally discrete entity, the molecule H2O. We cannot understand what a dozen of water molecules is before we 
know what one water molecule is. Whereas 1 kg may be either a standard unit or a scaling factor, 1 dozen is 
always and everywhere nothing but a scaling factor for a pre-given standard unit. 

The SI metrologists should stop regarding the mole as a unit needed in order to measure/count amount of 
substance, and instead regard it as being nothing but a scaling factor such as the dozen and the gross. Such 
scaling factors are not in themselves bound to any specific kinds of entities. In principle, they can be applied 
everywhere where there are discrete entities. As y dozen entities is equal to 12 y entities and y gross entities is 
equal to 144 y entities, we get  the following equalities:  

 
y mole entities = (6.022 14 x 1023) y entities = (the Avogadro number) times y entities = AN y entities.  
 

What this view means for the so-called Avogadro constant is explained in the fourth section below. 
My proposal, it should be noted, has nothing at all to do with the discussion whether or not the concrete 

international kilogram prototype at BIPM should be replaced by an abstract theoretical definition of 1 kg.    
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Stoichiometry and physics 
 
There is quite a difference between stoichiometry and what is typical of physics [4–8]. Stoichiometric formulas, 
e.g.,  
 
 ‘N2 + 3H2 → 2NH3’ and ‘2H2 + O2 → 2H2O’,  
 
differ not only from the very complex equations of modern physics, they differ radically even from very simple 
physical laws such as Galilei’s law for falling bodies and Newton’s second law, i.e.,  
 
 ‘d = g t2’ (the distance fallen is proportional to the square of the time elapsed; g is a constant), and 
 ‘F = m a’ (force equal mass times acceleration), respectively.  
 
There are three interconnected differences between stoichiometric formulas and simple physical laws that I will 
highlight: the kinds-of-number difference, the kinds-of-unit difference, and the kinds-of-quantity difference. 
When these differences are clearly seen, the gap between the mole on the one hand, and the metre, the kilogram, 
and the second on the other, becomes glaring. 

The kinds-of-number difference is simple to state: stoichiometric formulas take only integers (as in the 
examples) and rational numbers as values, whereas physical laws typically allow real numbers, and often also 
complex numbers, as values.  

Let me next present the kinds-of-unit difference. In stoichiometric formulas we find specific numbers 
connected to discrete kinds of entities, whereas in physical laws we find quantity variables and physical 
constants. The laws ‘d = g t2’ and ‘F = m a’ are not purely arithmetical statements, and must not be identified 
with ‘z = g y2’ and ‘z = y u’. The symbol d is not a variable for pure numbers, it is a variable for the quantity 
distance; t is a variable for the quantity time duration; and so on, for F, m, and a. However, all these kinds-of-
quantity have to be thought of as having some (even though no specific) unit by means of which they are 
connected to the real numbers; otherwise the identity sign of the physical laws makes no sense. The laws are in 
this sense unit-independent, but not unit-less.  

Of course, using the established units, we can make the physical law-equations mentioned more like the 
stoichiometric formulas; we can reformulate them as ‘z m = g y2 s2’, and ‘z N = y kg x u m/s2’, respectively. 
Nonetheless, at least two differences remain. First, z, y, and u are variables for numbers, not specific numbers as 
in the stoichiometric formulas. Second, the units used (m, s, N, kg, m/s2) can be exchanged for other units (yards, 
hours, etc.), but the stoichiometric formulas contain no similar conventionality. The naturally discrete entities of 
stoichiometry are their own metrological units, whereas the properties and relations that are typical of physical 
laws by convention must be ascribed a unit. In other words: stoichiometry works with natural units, physics 
normally with artificial units.  

Both the kinds-of-unit difference and the kinds-of-number difference are connected with, and emerge from, 
the difference between naturally discrete quantities and naturally continuous quantities that I mentioned in the 
first section. This is the kinds-of-quantity difference between stoichiometry and physics. Note that negative 
electrostatic charge is a naturally continuous quantity in spite of the fact that, with today’s knowledge, all such 
charges must be regarded as multiples of the invariant charge of the electron. For other reasons, physics must 
allow electric charge to take also non-integer values.  

Entities that are naturally discrete can be said to be their own counting units, and they need for their counting 
only the natural numbers. Counting always involves making some sense of the term “next”. Starting with 
number one, the next number is two, and so on. In a continuum, however, “the next” is impossible to use. Why? 
Answer: because between any two points, however close to each other in a continuum, there is always a third 
point. It is a category mistake to try to apply the term “the next point” in a continuum. This is the reason why 
continuous kinds-of-quantity must have a measurement unit externally imposed on them before they can be used 
in measurements.  

 
 
Direct and indirect counting 
 
When as children we were taught arithmetic, we were at the same time taught applied arithmetic. Or, rather, the 
other way round: we were taught pure arithmetic by means of applied arithmetic. One toy plus one toy equals 
two toys, and 1 + 1 is equal to 2. Everyone who knows pure arithmetic also knows much about its tacit 
application rules. Therefore, as soon as we have what we regard as discrete entities, we know in principle how to 
apply some arithmetic to them. From this perspective, there is no theoretical problem of how to count discrete 
entities such as molecules and atoms, only practical problems. But the latter can be huge, since it can be a matter 
of counting/measuring huge aggregates of unobservable discrete entities. 
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One part of the practical problem is very easily solved. The impracticality of using very large numbers is 
solved by the introduction of special names for large numbers. And starting from this perspective, the mole can 
be regarded as a name for sets that have the Avogadro number of entities as elements. And this is in my opinion 
also how the mole ought to be conceived [2]; and I am not alone [8] 

The hard part of the problem is of course that the entities of interest for physics and chemistry are not directly 
perceivable like the ordinary discrete things around us. However, if each entity on its microscopic level has a 
kind of property – let’s think of mass – that also exist on the macroscopic level, and we in some way or other 
think we know the value of the mass for a single such unobservable entity, then we can indirectly count numbers 
of such entities by measuring the mass of the whole aggregate. The rest is mere calculating. If we are interested 
not in the actual number of entities in the aggregate, but only in the relative number of entities in relation to 
another aggregate, it is enough to measure relative mass. This fact has been of great importance in the history of 
chemistry. 

Sometimes in the philosophy of measurement [9], a distinction is made between direct measurement 
(measuring something with something of the same kind; length by a metre stick) and indirect measurement 
(measuring something by means of something of another kind; velocity by means of clocks and metre sticks). 
What I have said in the last paragraph brings out into the open a similar distinction between direct and indirect 
counting. In indirect counting one either measures properties and then calculates what numbers of entities there 
are, or one measures property ratios and calculates the relative number of entities. Indirect counting comes 
naturally also outside of science. Children who play Memory (with cards) realize immediately, that there is no 
need to count all the pairs of cards of the players in order to see who has won. It is enough to make piles, one for 
each player, and check who has the highest one. This means that there is nothing in principle wrong in defining 
the mole as a scaling factor that is equal to the number of a certain kind of atoms in an aggregate with a specific 
mass. Wrong, though, is to regard it as an ordinary conventional measurement unit instead of as a scaling factor 
or a multiple unit that necessarily has to be related to some discrete kind of entity. 

 
 

The mole and the Avogadro constant 
 
I think there are a number of factors that can explain why, hitherto, a majority of metrologists have reached the 
false conclusion that the mole should be not just a number functioning as a scaling factor, but an artificial 
conventional metrological unit on a par with the other SI units. Here, however, I will only mention one such 
factor. I have become convinced that the problem of the mole has one of its roots in the fact that there is a 
famous law – the ideal gas law – that can be regarded as combining variables for continuous quantities (pressure, 
volume, and temperature) with a variable for discrete entities, numbers of molecules in a gas.   

Let us first look at the law in the form ‘p V = n R T’. Normally, as I have said, quantity variables are unit-
independent but not unit-less. In the equation above this is certainly true of p, V, and T, but not necessarily of n. 
This symbol might be regarded as a variable for numbers of moles, not for a certain kind-of-quantity. Whereas 
physical laws can be said to have variables that are searching for a unit, here we find a variable, n, that when 
understood as a unit can be said – conversely – to be a unit searching for a kind-of-quantity. And so it became 
linked to amount of substance. The mistake is not to try to find a kind-of-quantity to a pre-presented unit, but to 
regard from the start the mole as surely being an ordinary measurement unit. It comes out in the open if the 
following statement is accepted as true (sect. 6 of [2]): 

 
The law ‘p V = n R T’ and the similar law with the Boltzmann constant, ‘p V = N k T’, are not two different 
laws that happen to be similar, but are two empirically equivalent formulations of one and the same law.  
 

The Boltzmann formulation (in which N is a variable for number of molecules) neither has nor needs a concept 
of mole or some transformation of it; a fact that immediately indicates that there might be something odd in 
assuming that the mole must be an ordinary unit. Let’s take a closer look.  

From the equivalence of the law formulations, it follows that n R is equal to N k. Since n is a variable for 
moles and N a variable for a discrete kind-of-quantity, molecules, we can regard the gas constant R as being a 
constant per mole of a gas, and the Boltzmann constant k as being a constant per molecule of a gas. And now the 
Avogadro constant (NA) enters the scene as a conversion factor between the gas constant and the Boltzmann 
constant: ‘R = NA k’. The first thing now to be noted is, that the Avogadro constant, the name notwithstanding, 
cannot possibly be regarded as a constant of nature such as the Planck constant and the velocity of light in 
vacuum [2, 8]. However, this is exactly how it is regarded in the so-called “New SI” (p 3 in [10]). If the ideal gas 
law were not “ideal”, then the gas constant and the Boltzmann constant could be seen as two different ways of 
apprehending the same real constancy of nature, but the Avogadro constant would nonetheless be no more than a 
conversion number between these “real” constants. This being noted, the remaining problem is: should NA be 
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regarded as some kind of conversion factor for ordinary conventional units or as necessarily being only a scaling 
factor. 

Traditionally it is claimed, that since R is equal to NA k and R is a constant per mole of a gas, we must regard 
NA as being the Avogadro number (AN) per the unit mole of a gas (NA = AN mol-1). But there is another both 
simpler and better possibility. Using the Avogadro number, we can exchange the expression ‘R = NA k’ for ‘R = 
AN k’. But then, in the name of consistency, since R is a constant per mole of a gas, k a constant per molecule of 
a gas, and AN a pure number, the mole cannot here be understood as being a measurement unit. In terms of the SI 
brochure’s notion of “dimension” [1], the left-hand and the right-hand sides of the equality ‘R = AN k’ must have 
the same dimension; but it hasn’t if the mole (in “per mole”) on the left-hand side is an ordinary measurement 
unit. However, if the mole is regarded as only a purely mathematical scaling factor for molecules, this 
dimensional requirement is met. If one frees oneself from the view that the mole must be an ordinary 
measurement unit, then much of the fuzz around the mole disappears.  

I urge all metrologists to take a step back and, without any preconceptions, ask themselves: is the mole an 
ordinary conventional measurement unit, or is it nothing but a scaling factor in relation to pre-given units? 

According to my analysis, the whole essence of the mole is captured by this equality:  
 
‘y mole entities E = AN y entities E’ (where E represents an arbitrary discrete kind of entity).  
 

This equality, however, does not also capture the essence of the Avogadro number. As all pure numbers, AN can 
take on other functions; and so this number has. In the equality ‘y g = AN y Da’, it functions as a conversion 
factor for two different conventional units of mass, the gram and the dalton; it functions here exactly the way 
1.09 functions in the expression ‘y m = 1.09 y yard’. We can choose whether to make kilogram, gram, dalton, or 
something else our standard unit for mass, but we cannot choose whether the concept “mole entities E” or the 
concept “entities E” should be the primary concept. It must be the latter. 

 
 

SI and the New SI 
 
In the presently valid SI brochure [1], the unit mole is defined in such a way that it holds true: y mole entities E = 
A y entities E; where A is an experimentally determined specific number. It is the number of a certain kind of 
atoms in an aggregate with a specific mass; and it has been shown to equal 6.022 14 x 1023. The New SI [10] 
takes the experimental determination away. Its proposal implies that the following should be regarded as true by 
definition: ‘y mole entities E = AN y entities E’ (AN = 6.022 14 x 1023). If the main reason behind the proposal is 
that the Avogadro constant is regarded as a constant of nature like the Planck constant (which is central to the re-
definition of the kilogram), then the proposal rests (as shown in the former section) on a mistake. Otherwise, I 
can only say that the things I have tried to make clear in this paper apply equally to both the old and the new 
mole. In both cases, the mole is falsely presented as being an ordinary conventional measurement unit on a par 
with the other base units of the SI system. I propose that the mole should be regarded as nothing but a scaling 
factor or multiple unit for discrete entities, i.e., for entities that by nature are their own counting units.  

If this proposal is accepted, a natural further change would be to rename “amount of substance”; in the future 
it ought to be called “(number of) elementary entities” or simply “entities” [2, 11].  
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